

B.Tech – Electronics & Communication Engineering (E.C.E) Course Structure

&

SYLLABUS

(2020-21 academic year)

(NECR B.Tech 20)

(w.e.f AY: 2020-21)

NARAYANA ENGINEERING COLLEGE::NELLORE

INSTITUTE VISION & MISSION

VISION

 To be one of the nation's premier Institutions for Technical and Management Education and a key contributor for Technological and Socio-economic Development of the Nation.

MISSION

- To produce technically competent Engineers and Managers by maintaining high academic standards, world class infrastructure and core instructions.
- To enhance innovative skills and multi disciplinary approach of students through well experienced faculty and industry interactions.
- To inculcate global perspective and attitude of students to face real world challenges by developing leadership qualities, lifelong learning abilities and ethical values.

Department of E.C.E –

(Electronics and Communication Engineering)

DEPARTMENT VISION & MISSION

VISION OF THE DEPARTMENT

To produce technically competent and creative engineers who can cater to the industry and societal requirements in the field of Electronics & Communication Engineering.

MISSION OF THE DEPARTMENT

M1. To impart quality engineering education to students to enhance ability to pursue knowledge by providing core competency and state of the art infrastructure.

M2. To provide industry oriented learning for empowering and facilitating the learner through industry institute interaction and leadership qualities.

M3. To promote participation in research and extension activities for addressing the social needs by providing value based education along with life-long learning abilities.

PEOs, POs, PSOs

POs

1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.

2. Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

3. Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

4. Conduct investigations of complex problems: Use researchbased knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

5. Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.

6. The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

7. Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

8. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

9. Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

10. Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

11. Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

12: Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

PEOs

PEO 1: Attain professional excellence or gain higher degree to face challenges posed by industry and society

PEO 2: Address complex problems in a responsive and innovative manner.

PEO 3: Gain reputation by functioning effectively to address social and ethical responsibilities.

PSOs

PSO_1: Domain Specific Knowledge: Implement electronic systems related to Electronics Devices & Circuits, VLSI, Signal processing, Microcomputers, Embedded and Communication Systems to fulfill the solutions to real world challenges

PSO_2: Hardware Product Development: Apply the software and hardware tools in Analog and Digital Electronic circuit design to address complex Electronics and Communication engineering problems.

NARAYANA ENGINEERING COLLEGE::NELLORE

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

Course Structure for B.Tech ECE w.e. f AY: 2020-21

SEMESTER I	
------------	--

Subject Code	Category	Category Course Title			ct P r we	eriods eek	Credits			
			L	Т	Р	Total		Int. Marks	Ext. Marks	Total marks
20MA1001	BS	Algebra and Calculus	3	1	0	4	4	40	60	100
20PH1001	BS	Applied Physics	3	0	0	3	3	40	60	100
20ES1001	ES	Problem Solving and Programming	3	0	0	3	3	40	60	100
20EN1001	HS	English	2	0	0	2	2	40	60	100
20PH1501	BS	Applied Physics Lab	0	0	3	3	1.5	40	60	100
20EN1501	HS	English Language Lab	0	0	3	3	1.5	40	60	100
20ES1502	ES	Electronics and Communication Engineering Workshop	0	0	2	2	1	40	60	100
20ES1505	ES	Engineering and IT Workshop	0	0	4	4	2	40	60	100
20ES1506	ES	Problem Solving and Programming Lab	0	0	3	3	1.5	40	60	100
20MC8001	MC	Mandatory course I	Induction 1		luction Pi	ogram				
		Counselling/Mentoring	0	0	1	1	0			
		Sports/Hobby Clubs/Activities	0	0	2	2	0			
		Activity Point Programme	During the Ser				nester 2		20 Points	
		Total	11	1	18	30	19.5	360	540	900

SEMESTER II

Subject	Category	Course Title	Co		ct P r we	eriods æk	Credits	Scheme of Examination Max. Marks			
Code			L	Т	Р	Total		Int. Marks	Ext. Marks	Total marks	
20CH1001	BS	Chemistry	3	0	0	3	3	40	60	100	
20MA1004	BS	Vector Calculus and Transforms	3	1	0	4	4	40	60	100	
20ES1004	ES	Basic Electrical Engineering	3	0	0	3	3	40	60	100	
20ES1007	ES	Introduction to Python Programming	2	0	0	2	2	40	60	100	
20CH1501	BS	Chemistry Lab	0	0	3	3	1.5	40	60	100	
20ES1509	ES	Basic Electrical Engineering Lab	0	0	2	2	1	40	60	100	
20ES1504	ES	Engineering Graphics Lab	0	1	4	5	3	40	60	100	
20ES1510	ES	Introduction to Python Programming Lab	0	0	2	2	1	40	60	100	
20EN1502	HS	Oral Communication Skills Lab	0	0	2	2	1	40	60	100	
		Counselling/Mentoring	0	0	1	1	0				
		Sports/Hobby Clubs/Activities	0	0	2	2	0				
		Activity Point Programme	During the Sem				he Semester		20 Points		
		Total	11	2	16	29	19.5	360	540	900	

Subject Code	Catagory	Course Title	Co		ct P r we	eriods ek	-Credits	Scheme M	of Exan ax. Mar	
Subject Code	Category	Course Thie	L	Т	Р	Total	Creuits	Int. Marks	Ext. Marks	Total Marks
20MA1005	BS	Complex Analysis and Numerical Methods	3	0	0	3	3	40	60	100
20ES1011	ES	Data Structures	2	0	2	4	3	40	60	100
20ES1013	ES	Electronic Devices and Circuits	3	0	0	3	3	40	60	100
20EC2001	PC	Digital Logic Design	3	0	0	3	3	40	60	100
20EC2002	PC	Network Theory	3	0	0	3	3	40	60	100
20ES1516	ES	Electronic Devices and Circuits Lab	0	0	3	3	1.5	40	60	100
20EC2501	PC	Digital Logic Design Lab	0	0	3	3	1.5	40	60	100
20EC2502	PC	Network Theory Lab	0	0	3	3	1.5	40	60	100
20CD6001	SC	Career Competency Development I	0	0	2	2	1	40	60	100
20CC6001	SC	Value Added Course/ Certificate Course I	0	0	0	0	1	40	60	100
20MC8002-12	MC	Mandatory Course II	2	0	0	2	0	00	00	00
		Counselling/Mentoring	0	0	1	1	0			
		Sports/Hobby Clubs/Activities	0	0	2	2	0			
		Activity Point Programme	During the Seme			he Sem	ester	20 Points		
		Total	16	0	16	32	21.5	400	600	1000

SEMESTER III

Subject	Category	Course Title			ct P r we	eriods æk	Credits	Exam	cheme (ination Marks	
Code	Cutegory		L	Т	Р	Total	creuits	Int. Marks	Ext. Mar ks	Total Marks
20EC2003	PC	Analog Electronics	3	0	0	3	3	40	60	100
20EC2004	PC	Control Systems	2	0	0	2	2	40	60	100
20EC2005	РС	Electromagnetic Theory and Transmission Lines	3	0	0	3	3	40	60	100
20EC2006	PC	Probability and Random Processes	3	0	0	3	3	40	60	100
20EC2007	PC	Signals and Systems	3	0	0	3	3	40	60	100
-	OE	Open Elective I	3	0	0	3	3	40	60	100
20EC2503	PC	Analog Electronics Lab	0	0	3	3	1.5	40	60	100
20EC2504	PC	MATLAB and Simulink Lab	0	0	2	2	1	40	60	100
20CD6002	SC	Career Competency Development II	0	0	2	2	1	40	60	100
20CC6002	SC	Value Added Course/ Certificate Course II	0	0	0	0	1	40	60	100
		Counselling/Mentoring	0	0	1	1	0			
		Sports/Hobby Clubs/Activities	0	0	2	2	0			
		Activity Point Programme	During the Sen			the Sem	lester	20 Points		
		Total	17	0	10	27	21.5	400	600	1000

SEMESTER IV

Subject Code	Category	Course Title			ct P r we	eriods ek	Credits	Scheme of Examination Max. Marks		
			L	Т	Р	Total		Int. Marks	Ext. Marks	Total Marks
20EC2008	РС	Analog and Digital Communications	3	0	0	3	3	40	60	100
20EC2009	PC	Linear IC Applications	3	0	0	3	3	40	60	100
20EC2010	PC	Microprocessors and Microcontrollers	3	0	0	3	3	40	60	100
-	OE	Open elective II	3	0	0	3	3	40	60	100
20EC4001-06	PE	Professional Elective I	3	0	0	3	3	40	60	100
20EC2505	PC	Analog and Digital Communications Lab	0	0	3	3	1.5	40	60	100
20EC2506	PC	Microprocessors and Microcontrollers Lab	0	0	3	3	1.5	40	60	100
20CD6003	SC	Career Competency Development III	0	0	2	2	1	40	60	100
20CC6003	SC	Value Added Course/ Certificate Course III	0	0	0	0	1	40	60	100
20EC7501	PR	Internship I/on job training/Com Ser Project	0	0	0	0	1.5	00	100	100
20MC8002-12	MC	Mandatory Course III	2	0	0	2	0	00	00	00
		Counselling/Mentoring	0	0	1	1	0			
		Sports/Hobby Clubs/Activities	0	0	2	2	0			
		Activity Point Programme	During the Sen				nester 20 Points		S	
		Total	17	0	10	28	21.5	360 640 100		

SEMESTER V

Subject Code	Catagory	Category Course Title			ct P r we	eriods ek	Cuedita	Scheme of Examination Max. Marks		
Subject Code	Category	Course 1 the	L	Т	Р	Total	Credits	Int. Marks	Ext. Marks	Total Marks
20EC2011	PC	Digital Design using HDL	3	0	0	3	3	40	60	100
20EC2012	PC	Digital Signal Processing	3	0	0	3	3	40	60	100
-	OE	Open Elective III	3	0	0	3	3	40	60	100
20EC4007-12	PE	Professional Elective II	3	0	0	3	3	40	60	100
20EC4013-18	PE	Professional Elective III	3	0	0	3	3	40	60	100
20EC2507	РС	Digital Signal Processing Lab	0	0	3	3	1.5	40	60	100
20EC2508	РС	Integrated Circuits Lab	0	0	3	3	1.5	40	60	100
20EC2509	РС	Electronic Design Workshop	0	0	3	3	1.5	40	60	100
20CD6004	SC	Career Competency Development IV	0	0	2	2	1	40	60	100
20CC6004	SC	Value Added Course/ Certificate Course IV	0	0	0	0	1	40	60	100
		Counselling/ Mentoring	0	0	1	1	0			
		Sports/ Hobby Clubs/Activities	0	0	2	2	0			
		Activity Point Programme			Du	ring the	Semester		20 Points	
		Total	15	0	12	29	21.5	400	600	1000

SEMESTER VI Т

Subject Code	Category Course Title		Contact Periods per week				Credits			
			L	Т	Р	Total		Int. Marks	Ext. Marks	Total Marks
20HS5001 -8	HS	Humanities and Social Science Elective	2	0	0	2	2	40	60	100
20EC2013	PC	VLSI Design	3	0	0	3	3	40	60	100
20EC2014	РС	Microwave and Optical Communications	3	0	0	3	3	40	60	100
-	OE	Open Elective IV	3	0	0	3	3	40	60	100
20EC4019-24	PE	Professional Elective IV	3	0	0	3	3	40	60	100
20EC4025-30	PE	Professional Elective V	3	0	0	3	3	40	60	100
20EC2510	PC	VLSI Design Lab	0	0	2	2	1	40	60	100
20EC2511	PC	Microwave and Optical Communications Lab	0	0	3	3	1.5	40	60	100
20CD6005	SC	Career Competency Development V	0	0	2	2	1	40	60	100
20CC6501	SC	Skill Development Training	0	0	2	2	1	40	60	100
20EC7502	PR	Internship II/on job training/Com Ser Project	0	0	0	0	1.5	00	100	100
20MC8002-12	MC	Mandatory Course IV	2	0	0	2	0	00	00	00
		Counselling/Mentoring	0	0	1	1	0			
		Sports/Hobby Clubs/Activities	0	0	2	2	0			
		Activity Point Programme	During the				Semester		20 Points	
		Total	19	0	12	31	23	400	700	1100

SEMESTER VII

SEMESTER VIII

Subject Code	Category	Course Title		Contact Periods per week		Credits	S	cheme Exami n M Maı	natio ax.	
			L T P Total			Int. Marks	Ext. Marks	Total Marks		
20EC7503	PR	Project work, seminar and internship	0	0	0	0	12	60	140	200
		Activity Point Programme		Du	ring	the Sem	ester		20 point	S
			0	0	0	0	12	60	140	200

S. No	Course Code	Subject
1	20EC3001	Image Processing
2	20EC3002	Embedded Systems
3	20EC3003	Nano Technology
4	20EC3004	VLSI Design
5	20EC3005	Sensors and Actuators
6	20EC3006	Internet of Things (IoT)
7	20EC3007	Microprocessors and Microcontrollers
8	20EC3008	Wireless Sensor Networks
9	20EC3009	Microprocessor and Interfacing
10	20EC3010	Data Communication and Networks
11	20EC3011	Digital Logic Design
12	20EC3012	Principles of Communication

Open Electives (OE) offered by ECE Department

PROFESSIONAL ELECTIVE (PE)

The Professional Elective Courses (PE) are shown in different tracks/groups: The students will have options of selecting the electives from the different tracks/groups depending on the specialization one wishes to acquire.

ELECTIVE TRACK/GROUP	Professional Elective-1	Professional Elective-2	Professional Elective-3	Professional Elective-4	Professional Elective-5
Communications	An Introduction to coding theory (20EC4001)	Antennas (20EC407)	Satellite communication (20EC4013)	Wireless communication (20EC4019)	Signal Processing for mm Wave Communication for 5G and Beyond (20EC4025)
Micro Electronics	Industrial Electronics (20EC4002)	Micro Electronics (20EC4008)	Introduction to MEMS (20EC4014)	Fundamentals of Nano and Quantum Photonics (20EC4020)	High Speed Electronics (20EC4026)
Signal & Image Processing	MATLAB Programming For Numerical Computation (20EC4003)	Adaptive Signal Processing (20EC4009)	Introduction to Machine Learning (20EC4015)	Digital Image Processing (20EC4021)	Digital Speech Processing (20EC4027)
VLSI	Fundamentals of Micro and Nano Fabrication (20EC4004)	Mixed Signal Design (20EC4010)	RF Integrated Circuits (20EC4016)	Low Power VLSI Design (20EC4022)	FPGA Architectures (20EC4028)
Embedded System	Semiconductor Memories (20EC4005)	Real Time Operating Systems (20EC4011)	Introduction to Internet of things (20EC4017)	Advanced Embedded Logic design (20EC4023)	Embedded System Design with ARM (20EC4029)
Automation	Programmable Logic Controllers (20EC4006)	Electronic Measurements & Instrumentation (20EC4012)	Biomedical Instrumentation (20EC4018)	Virtual Instrumentation (20EC4024)	Process Control & Instrumentation (20EC4030)

S. NO.	COURSE NAME	COURSE CODE	CREDITS
	POOL 1		
1	CMOS IC Design	20ECH001	4
2	CAD for VLSI	20ECH002	4
3	VLSI Testing	20ECH003	4
4	ASIC Design	20ECH004	4
	POOL 2	· · ·	
1	Spread Spectrum Communications	20ECH005	4
2	Modern Digital Communication Techniques	20ECH006	4
3	Cellular and Mobile Communications	20ECH007	4
4	Radar Systems	20ECH008	4
	POOL 3		
1	Multimedia Compression Techniques	20ECH009	4
2	Digital Video Processing	20ECH010	4
3	Advanced Digital Signal Processing	20ECH011	4
4	DSP Algorithms and Architectures	20ECH012	4
	POOL 4		
1	Advanced Microcontroller	20ECH013	4
2	ARM Based Development	20ECH014	4
3	Embedded Computing	20ECH015	4
4	Embedded Software Testing	20ECH016	4

HONORS

MINORS

S. NO	SUBJECT	COURSE CODE	CREDITS
1	Network Analysis	20ECM001	4
2	Electronic Devices Circuits	20ECM002	4
3	Signals and Systems	20ECM003	4
4	Information Theory and Coding	20ECM004	4
5	Electronic Circuit Analysis	20ECM005	4
6	Microprocessors	20ECM006	4
7	Integrated Circuits	20ECM007	4
8	Digital Signal Processing	20ECM008	4

HUMANITIES AND SOCIAL SCIENCES (HS)

SEMESTER	SUBJECT	COURSE CODE	CREDITS							
T	English	20EN1001	2							
I	English Language Lab	20EN1501	1.5							
Π	Oral Communication Skills Lab	20EN1502	1							
VII	Humanities and Social Science Elective	20HS5008	2							
		TOTAL	6.5							

BASIC SCIENCES (BS)

SEMESTER	SUBJECT	COURSE CODE	CREDITS
	Applied Physics	20PH1001	3
Ι	Algebra and Calculus	20MA1001	4
	Applied Physics Lab	20PH1501	1.5
	Vector Calculus and Transforms	20MA1004	4
II	Chemistry	20CH1001	3
	Chemistry Lab	20CH1501	1.5
III	Complex Analysis and Numerical Methods	20MA1005	3
		TOTAL	20

ENGINEERING SCIENCES (ES)

SEMESTER	SUBJECT	COURSE CODE	CREDITS
	Problem Solving and Programming	20ES1001	3
І	Engineering and IT Workshop	20ES1505	2
-	Problem Solving and Programming Lab	20ES1506	1.5
	Electronics and Communication Engineering Workshop	20ES1502	1
	Basic Electrical Engineering	20ES1004	3
	Introduction to Python Programming	20ES1007	2
II	Introduction to Python Programming Lab	20ES1510	1
	Engineering Graphics lab	20ES1504	3
	Basic Electrical Engineering Lab	20ES1509	1
	Data Structures	20ES1011	3
III	Electronic Devices and Circuits	20ES1013	3
	Electronic Devices and Circuits Lab	20ES1516	1.5
		TOTAL	25

PROFESSIONAL CORE (PC)

SEMESTER	COURSE CODE	SUBJECT	CREDITS								
	20EC2001 Digital Logic Design										
III	20EC2002	Network Theory	3								
	20EC2501	Digital Logic Design Lab	1.5								
	20EC2502	Network Theory Lab	1.5								
	20EC2007	Analog Electronics		•	3						
	20EC2003	Electromagnetic Theory and Transmission Line	es		3						
	20EC2004	Control System			2						
IV	20EC2005	Probability and Random Processes			3						
	20EC2006	Signals and Systems			3						
	20EC2503	Analog Electronics Lab									
	20EC2504	MATLAB and Simulink Lab	(5+2)	16.5	1.5						
	20EC2008	Analog and Digital Communications			3						
	20EC2009	Linear IC Applications			3						
V	20EC2010	Microprocessors and Microcontrollers			3						
	20EC2505	Analog and Digital Communications Lab			1.5						
	20EC2506	Microprocessors and Microcontrollers Lab	(3+2)	12	1.5						
	20EC2011	Digital Design using HDL			3						
VI	20EC2012	Digital Signal Processing			3						
V I	20EC2507	Digital Signal Processing Lab			1.5						
Γ	20EC2508	Integrated Circuits Lab			1.5						
	20EC2509	VLSI Design Lab	(3+3)	10.5	1.5						
	20EC2013	VLSI Design			3						
VII	20EC2014	Microwave and Optical Communications			3						
	20EC2510	Electronic Design Workshop			1.5						
	20EC2511	Microwave and Optical Communications Lab	(1+2)	8.5	1						
		*	T	OTAL	56.5						

PROFESSIONAL ELECTIVES (PE)

SEMESTER	SUBJECT	COURSE CODE	CREDITS
V Sem	Professional Elective I	20EC4001-06	3
VI Som	Professional Elective II	20EC4007-12	3
VI Sem	Professional Elective III	20EC4013-18	3
VILCom	Professional Elective IV	20EC4019-24	3
VII Sem	Professional Elective V	20EC4025-30	3
		TOTAL	15

OPEN ELECTIVES (OE)

SEMESTER	SUBJECT	CREDITS
IVSem	Open Elective I	3
V Sem	Open Elective II	3
VI Sem	Open Elective III	3
VIISem	Open Elective IV	3
	TOTAL	12

SEMESTER	SUBJECT	COURSE CODE	CREDIT S
III Sem	Career Competency Development I	20CD6001	1
	Value Added Course/Certificate Course I	20CC6001	1
IV Sem	Career Competency Development II	20CD6002	1
	Value Added Course/Certificate Course II	20CC6002	1
V Sem	Career Competency Development III	20CD6003	1
	Value Added Course/Certificate Course III	20CC6003	1
VI Sem	Career Competency Development IV	20CD6004	1
	Value Added Course/Certificate Course IV	20CC6004	1
VII Sem	Career Competency Development V	20CD6005	1
	Skill Development Training	20CC6501	1
		TOTAL	10

SKILL ORIENTED COURSE (SC)

PROJECT (PR)

SEMESTER	SUBJECT	COURSE CODE	CREDITS
V Sem	Internship I/on job training/Com Ser Project	20EC7501	1.5
VII Sem	Internship II/on job training/Com Ser Project	20EC7502	1.5
VIII Sem	Project work, seminar and internship	20EC7503	12
		TOTAL	15

S NO	САТ			CREDITS PER SEMESTER						AICTE		
S. NO	CAI	Ι	II	III	IV	V	VI	VII	VIII	CREDITS		
1	HS	3.5	1					2		6.5	12	
2	BS	8.5	8.5	3						20	25	
3	ES	7.5	10	7.5						25	24	
4	PC			9	16.5	12	10.5	8.5		56.5	48	
5	OE				3	3	3	3		12	18	
6	PE					3	6	6		15	18	
7	PR					1.5		1.5	12	15	15	
8	SC			2	2	2	2	2		10		
	MC		No Credits									
	TOTAL	19.5	19.5	21.5	21.5	21.5	21.5	23	12	160	160	

NARAYANA ENGINEERING COLLEGE::NELLORE

Scheme of **Contact Periods Examination Max.** per week Marks Subject Code Category **Course Title** Credits Int. Ext. Total Т L Р Total Mark Marks marks S BS 3 40 20MA1001 Algebra and Calculus 1 0 4 4 60 100 20PH1001 BS **Applied Physics** 3 0 3 3 40 100 0 60 Problem Solving and 3 ES 0 0 3 3 40 60 100 20ES1001 Programming 2 2 20EN1001 0 2 100 HS English 0 **40** 60 20PH1501 BS Applied Physics Lab 0 0 3 3 40 100 1.5 60 English Language Lab 20EN1501 HS 0 0 3 3 1.5 40 60 100 Electronics and 2 ES Communication 0 0 2 40 100 20ES1502 1 60 Engineering Workshop Engineering and IT 0 0 4 20ES1505 ES 4 2 40 60 100 Workshop Problem Solving and 0 0 3 20ES1506 3 1.5 40 ES 60 100 Programming Lab 20MC8001 MC Mandatory course I Induction Program Counselling/Mentoring 0 0 1 0 1 ------Sports/Hobby 0 0 2 2 0 ___ __ --Clubs/Activities Activity Point Programme During the Semester 20 Points 540 Total 11 18 1 30 19.5 360 900

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING SEMESTER I

NARAYANA ENGINEERING COLLEGE::NELLORE

NARAYANA ENGINEERING COLLEGE:: NELLORE													
20MA1001	AL	ME)	R-2020										
Semester	H	ours / Wee	ek	Total	Credit		Max I	Marks					
	L	Т	Р	hrs	С	CIE	SEE	TOTAL					
Ι	3	1	0	64	4	40	60	100					
Pre-requisite: Intermediate Mathematics													
Course Ob													
	To familiarize the students with the theory of matrices and quadratic forms												
	•			•	ential equat								
3.	Ũ		arners in	the conce	pts of high	er order d	ifferential	equation an its					
	applicatio												
4.					mean value	theorems	and the co	ncepts of					
_	multivariable differential calculus.												
			•		e the partia		-						
6.	-				tical tools r	needed in	evaluating	multiple					
<u> </u>	integrals				0.1		1 . 111	DI					
Course Ou	tcomes: A	after succ	essful con	npletion c	of the cours	e, the stud	lent will	Blooms					
be able to								taxonomy Level					
CO 1								oroblems .(BL-3)					
CO 2								ring fields .(BL-3)					
CO 3	Identify	different	types of	higher ord	der differer	ntial equat	tions and t	heir applications					
	in solvin	g engine	ering pro	oblems . (E	3L-3)								
CO 4	Apply N	/lean valu	e theoren	ns, Multi v	ariable calc	ulus to sol	ve enginee	ering problems.(BL-					
	3)												
CO 5	Identify	solution m	nethods fo	or partial c	lifferential	equations	that mode	l physical					
	processe	es (BL-3)											
CO 6	Apply m	ultiple int	agrals tor	hniques to	solve engi	nooring pr	oblome (PI	2)					

	CO-PO Mapping														
СО	PO PSO													50	
	PO	PO												PSO	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	
CO1	3	3											1		
CO2	3	3											1		
CO3	3	3											1		
CO4	3	3											1		
CO5	3	3											1		
CO6	3	3											1		
					1: Lo	w, 2-N	/ledium	n, 3- H	ligh						

	COURSE CONTENT	
MODULE – 1	MATRICES	14 h
Introduction to matri	ces, Definition of Rank ,Definition of Echelon form , Problems, Solv	ving System of
Non-Homogeneous e	equations- Definition, Conditions for Consistency, Problems, Solv	ing System of
Homogeneous equation	ons- Definition, Problems, Eigen values & Eigen Vectors- Definition	tion, Problems
,properties of Eigen	n values & Eigen Vectors(Without proof), Cayley - Hamilto	on Theorem -

Statement(Without proof), finding inverse and power of a matrix by Cayley-Hamilton Theorem, Diagonalization of a Matrix-Definition, similarity of a matrix, modal matrix, spectral matrix, powers of a matrix, problems on Diagonalization of a matrix, Quadratic Forms- Definition, Finding Matrix from Q.F, Index, signature, rank and nature of the quadratic forms, Reduction of Q.F. into a canonical form by linear transformation, Reduction of Q.F. into a canonical form by orthogonal transformation.

At the end of the Module 1, students will be able to:

- 1. Solve the system of homogenous and non-homogenous linear equations.(BL-3)
- 2. Obtain the Eigen values and Eigen vectors of a matrix.(BL-2)
- 3. Identify special properties of matrix and for using this information to study the nature of the linear equations. (BL-3)

9h

- 4. Find the inverse and powers of a square matrix.(BL-1)
- 5. Obtain the diagonalization form of the matrix.(BL-2)
- 6. Apply the techniques of matrices in various engineering problems. (BL-3)

MODULE -2 FIRST ORDER ORDINARY DIFFERENTIAL EQUATIONS

Exact Differential equation - Definition, condition for exactness, problems, Non - Exact Differential equations- Integrating factor , Method1:Integrating factor by inspection, problems, Method2:Finding Integrating factor , problems, Method3:Finding Integrating factor , problems, Method5:Finding Integrating factor , problems, Linear differential Equation- Definition, Working rule to find general solution, problems, Bernoulli's differential equation of First order: Newton's law of Cooling-Explanation of the concept, problems, Law of natural growth and Decay- Explanation of the concept, problems and Simple Electric Circuits-Explanation of the concept, problems.

At the end of the Module 2, students will be able to:

- 1. Identify the first order ordinary differential equations. (BL-3)
- 2. Solve the first order ordinary differential equations. (BL-3)
- 3. Apply the techniques of first order ordinary differential equations in Newton's law of cooling, Natural growth& Decay problems. (BL-3)
- 4. Make Use of the first order ordinary differential equation techniques in simple electric circuits.(BL-3)

MODULE-3 HIGHER ORDER ORDINARY DIFFERENTIAL EQUATIONS 10h

Non-Homogenous Linear Differential equation of second and higher order with constant coefficients-Definition, complete solution, operator D, rules for finding Complimentary function, problems, inverse operator, General method for finding Particular Integral.

Non-homogeneous Linear Differential Equations of Second & Higher order with Constant coefficients with RHS term of the type e^{ax} , sinax , cosax, Polynomial in X, $e^{ax}v(x)$, X.V(x)-Explanation of the concept& problems, Method of variation of parameters- Explanation of the concept& problems, Euler-Cauchy equation- Definition, problems ,Legendre's Linear equation- Definition, problems. Applications to Higher order Differential Equations - L-C-R circuits, problems.

At the end of the Module 3, students will be able to:

- 1. Identify the higher order ordinary differential equations. (BL-3)
- 2. Solve the linear differential equations with constant coefficients by appropriate methods.
- (BL-3)
- Solve the linear differential equations with variable coefficients by appropriate methods.(BL-3)
 4.Make Use of the higher order ordinary differential equations techniques in electrical circuits. and in various engineering problems. (BL-3)

MODULE-4	MEAN VALUE THEOREMS & MULTIVARIABLE	9h
	CALCULUS	
-	n's theorems with remainders-Statements (without proof), problem	•
series, problems on		
	, problems ,Maxima & Minima of function of two variables - Rul wo variables without constraint- problems ,Maxima & Minima of	
	tt- problems, Lagrange's Method of Undetermined multipliers, prob	
	le 4, students will be able to:	Jiems.
	e given function as a series of Taylor's and maclurin's with remain	ders.(BL-2)
	expansions of functions using mean value theorems. (BL-2)	· · · ·
	n concept to deal with problems in change of variables.(BL-3)	
	kima and minimum values of the function for two variables.(BL-2)	
5. Apply the mea	n value theorems to check the continuity of the function in the	given interval.
(BL-3)	-	-
MODULE-5	PARTIAL DIFFERENTIAL EQUATIONS	11h
Definition ,Formation of	of PDE by the Method of Elimination of arbitrary constants, proble	ems, Method of
Elimination of arbitrar	y functions, problems, Method of Separation of Variables-Exp	lanation of the
concept& problems, Fi	rst order linear partial differential equations-Definition, Solution	s of first order
linear PDE-Working r	ule of Lagrange's Method, problems ,First order non-linear par	tial differential
equations- Definition,	Solutions of first order non-linear partial differential equations-S	tandard form-I,
problems , Standard for	m-II, problems ,Standard form-III, problems, Standard form-IV, pr	oblems.
At the end of the Modu	le 5, students will be able to:	
1. Identify the	e basic properties of partial differential equations. (BL-3)	
2. Outline par	tial differential equations. (BL-2)	
3. Solve the a	pplications of PDE by using the method of separation of variables	(BL-3)
4. Apply the I	PDE techniques in various engineering fields. (BL-3)	
MODULE-6	MULTIPLE INTEGRALS	11h
	oduction, Evaluation in Cartesian coordinates, problems, Evalu	
	variables - Problems on Cartesian to Polar, Change of Order	
	ed by plane curves - Problems, Triple integrals- Introduction, Evalu	
÷ .	riple Integrals – Problems, Change of variables between Cartesian,	cylindrical and
spherical polar coordina	le 6, students will be able to:	
	Integrals in Cartesian and polar co-ordinates. (BTL-2)	
	bounded by a region using double integration techniques.(BTL-2)	
 Solve triple inte 		
*	s by using triple integrals.(BTL-2)	
	multiple integral techniques in engineering problems.(BTL-3)	
4. Wake 0se of 1		
	Total hours: 64 hour	-8
Content beyond syllab 1. Orthogonal Tra		
2. Deflection of B	•	
	inear equations with constant coefficients	
	for function of two variables.	
•	Linear Partial differential equations with constant coefficients.	
•	mass, centreof gravity, moment of inertia	

SNO	Торіс	CO	Reference
1	Matrices	CO1	https://youtu.be/P2pL5VThrzQ
2	First Order Ordinary Differential Equations	CO2	https://youtu.be/P7gVp333B6M
3	Higher Order Ordinary Differential Equations	CO3	https://youtu.be/btOCUmJkrrg
1	Mean value theorems & Multivariable Calculus:	CO4	https://youtu.be/bJPuy0QZ-tE https://youtu.be/0apMXhWG_W8 https://youtu.be/aqfSOOiO2kI
5	Partial DifferentialEquations	CO5	https://youtu.be/kZ7Oa7iMiCs
5	Multiple Integrals	CO6	https://youtu.be/mIeeVrv447s

Text Book(s):

- 1. Erwin Kreyszig, Advanced Engineering Mathematics, 10/e, John Wiley & Sons, 2011.
- 2. B. S. Grewal, Higher Engineering Mathematics, 44/e, Khanna Publishers, 2017

3. N. Bali, M. Goyal, C. Watkins, Advanced Engineering Mathematics, Infinity Science Press. **Reference Book(s):**

1. R. K. Jain and S. R. K. Iyengar, Advanced Engineering Mathematics, 3/e, Alpha Science International Ltd., 2002.

2.George B. Thomas, Maurice D. Weir and Joel Hass, Thomas Calculus, 13/e, Pearson Publishers, 2013.

3.B. V. Ramana, Higher Engineering Mathematics, Mc Graw Hill Education

4.H. k Das, Er. Rajnish Verma, Higher Engineering Mathematics, S. Chand.

		NA	ARAY	ANA I	ENGIN	NEER	ING (OLLI	EGE ::	NEL	LORE	4		
20PH1001					Α	PPLIE	E D P H	YSIC	S				R2020	
Semester	Hour	s / We	eek		Tota	al hrs	Cre	dit	Μ	Max Marks				
	L	Т		Р			С		C	IE	SEI	Ξ	TOTA	L
Ι	3	0		0	48		3		40)	60		100	
Pre-requisi	ite: F	undan	nental	concep	ts of P	hysics								
6. To imp	ntify the to its able the tals. blain and ch the fascina part kn	ne imp Engine e stude dynam nd pro- concep tting a	eering ents in ics of vide th ots rela pplicat	applica unders free ele e knov ated to tions.	ations tanding ectrons vledge superc	g the in in me about onduct	mporta tals by semice tivity d	nce of apply onduct & nano	quanti ing Fro ors materi	um phy ee elec als wh	vsics tron th ich lea	eories Ids to	on	
applica Course Ou CO 1	tcome Com	prehe	nd the		pts of	matte	r wave	s, wav					o: retation	to
CO 2				tron th			•							
CO 2				physic					2)					
CO 4										dnand	mate	vrials f	or scient	ific
04				applica	-		ucting	mater		unanc	-mate		JI SCIEIII	IIIC
CO 5		ze imp	-				otical fi	bers ir	n Engin	eering	and N	/ledica	l applica	tions.
CO 6				e conce natter a					e func	tions a	nd its i	interpr	etation	to
					C	CO-PC		ping						
CO						P	-							50
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO 12	PSO	PSO
<u> </u>	1	2	3	4	5	6	7	8	9	10	11	12	1	2
<u>CO1</u>	3	2												
CO2	3	2												
CO3	3	1												
CO4 CO5	3	1												
	3	2				1							1	
<u>CO5</u> CO6	3	1				1							1	

COURSE CONTENT											
MODULE – 1	9h										
Interference-Pr	inciple of Superposition, Interference of light, Conditions	for sustained									
Interference ,d	erivation of conditions for constructive and destructive interference	e of reflected									
light from a	thin film, Newton's Rings-experimental arrangement, Dete	rmination of									
Wavelength; E	ngineering applications of Interference										
Diffraction-distinction between interference and diffraction, differences between Fresnel											
&Fraunhoffer	diffractions, Fraunhoffer Diffraction at single slit(derivation, energy	distribution									

curve), Fraunhoffer Diffraction at a Double slit (derivation, energy distribution curve), Theory of Diffraction Grating -Determination of Wavelength; Engineering applications of diffraction At the end of the Module 1, students will be able to:

- 1. explain the need of coherent sources and the conditions for sustained interference (BL2)
- 2. describe the theory of interference of reflected light from a thin film (BL2)
- 3. explain the theory of Fraunhoffer Diffraction of light at single and multiple slits (BL2)
- 4. identify engineering applications of interference and diffraction (BL3)
- 5. analyze the differences between interference and diffraction (BL4)

MODULE -2		INTRO	DUCT	ION TOQUANTUMMECHANICS		8h

Matter waves -de-Broglie hypothesis - properties, G.P.Thomson experiment, Phase and group velocities—Expression for group velocity; Heisenberg's uncertainty principle; Schrodinger's time dependent and independent wave equations – Physical significance of wave function-important characteristics of wave function, free particle energy, wave function, momentum; operators and expectation values, Eigen values and Eigen functions of a particle confined to one dimensional infinite square well (potentialwell).

At the end of the Module 2, students will be able to:

- 1. understand the concept of matter waves (BL2)
- 2. Recognize the difference between phase velocity and group velocity (BL2).
- 3. understand Physical significance of wave function (BL2)
- 4. Identify the importance of Schrodinger's wave equation in describing the motion of Elementary particles (BL3).

Lien	ientary particles (BES)	
MODULE-3	FREE ELECTRON THEORY OF METALS	8 h
Classical free	electron theory-assumptions, expression for electrical conductivity	y, merits and
demerits; Qua	ntum free electron theory of metals-expression for electrical conduc	tivity; Fermi-
Dirac distribut	tion, Mathiesson rule, causes of electrical resistance in metals, Blo	och's theorem
(Qualitative),	Kronig - Penny Model (Qualitative), effective mass and Brit	llouin zones,
Classification	of solids into conductors, semiconductors and insulators based on	energy band

gap.

At the end of the Module 3, students will be able to:

- 1. Explain classical, Quantum free electron theory of metals (BL2).
- 2. Apply these theories to explain electrical conductivity in metals (BL3)
- 3. Explain formation of energy bands in solids(BL2).
- 4.Understand the band structure of a solid and Classify materials as metals, insulators, or semiconductors, and sketch a schematic band diagram for each one (BL2).

MODULE-4

INTRODUCTION TO SEMICONDUCTORS

8 h

8 h

Origin of energy bands, Intrinsic semiconductors - density of charge carriers(derivation), Fermi energy, Electrical conductivity; extrinsic semiconductors - P-type & N-type, Density of charge carriers, Dependence of Fermi energy on carrier concentration and temperature; Direct and Indirect band gap semiconductors, Hall effect- Hall coefficient (derivation), Applications of Hall effect; Drift and Diffusion currents, Einstein coefficients, Continuity equation(derivation), Applications of Semiconductors.

At the end of the Module 4, students will be able to:

- 1. Outline the properties of n-type and p-type semiconductors (BL2).
- 2. Interpretthe direct and indirect band gap semiconductors(BL2).
- 3. Identify the type of semiconductor using Hall effect(BL3).
- 4. Identifyapplications of semiconductors in electronic devices(BL3)

MODULE-5 SUPERCONDUCTORS AND NANOMATERIALS	
--	--

Superconductors- Properties, Meissner's effect, BCS Theory, Josephson effect (AC &DC), Types of Super conductors, Applications of superconductors. Nano materials – Significance of nanoscale, Properties of nanomaterials: Physical, mechanical, Magnetic, Optical; Synthesis of nanomaterials: Top-down-Ball Milling, Bottom-up –Chemical vapour deposition ; Applications of Nano materials.

At the end of the Module 5, students will be able to:

- 1.Explain how electrical resistivity of solids changes with temperature(BL2)
- 2. Classify superconductors based on Meissner's effect (BL2)
- 3.Explain Meissner's effect, BCS theory & Josephson effect in superconductors (BL2)

4. Identify the nano size dependent properties of nano materials (BL3)

5.Illustrate the methods for the synthesis and characterization of nano materials (BL2)

6.Apply the basic properties of nano materials in various Engineering branches (BL3)

Lasers: Spontaneous & stimulated emission of radiation, Population inversion, Pumping methods, Properties of lasers- monochromaticity, coherence, directionality, brightness, Types of lasers: Nd-YAG Laser, He–Ne Laser, Semiconductor laser; Applications.

Introduction to Optical Fibers-Total Internal Reflection-Critical angle of propagation-Acceptance angle-Numerical Aperture-Classification of fibers based on Refractive index profile-advantages of optical fibres.

At the end of the Module 6, students will be able to:

- 1. describe Spontaneous & stimulated emission of radiation (BL2)
- 2. Understand the basic concepts of LASER light Sources (BL2)
- 3. describe the construction and working of different types of Lasers (BL2)
- 4. identify the applications of lasers in various fields (BL3)

Content beyond syllabus:

Polarization of light.

SN	s to promote self-Learnin Topic	СО	Reference
0	ropio	00	
1	WAVE OPTICS	CO 1	https://youtu.be/n65gZGwiZtk
2	INTRODUCTION TO QUANTUM MECHANICS	CO 2	https://youtu.be/w7Wf3Wr0guA?list=PL1955A15B7 A7F https://youtu.be/NfkJKIoExYo?list=PL1955A15B7F 7F
3	FREE ELECTRON THEORY OF METALS	CO 3	https://youtu.be/L-eOdZFt9BY https://youtu.be/G2zgAs5O7I8
4	INTRODUCTION TO SEMICONDUCTORS	CO4	https://youtu.be/BQijtvYxgIM https://youtu.be/rzxCRJcFaIw
5	SUPERCONDUCTO RS AND NANOMATERIALS	CO5	https://youtu.be/GglT1RoBPzg https://youtu.be/iiT_KJJ1Uhs
6	LASERS	CO6	https://youtu.be/eoOM0Gx6GJc https://youtu.be/RyY4PEpV2RQ

Text Book(s):

1. M. N. Avadhanulu, P.G. Kshirsagar& TVS Arun Murthy" AText book of Engineering Physics"- S. Chand Publications, 11th Edition 2019.

2. B.K. Pandey and S. Chaturvedi, Engineering Physics, Cengage Learning, 2012.

3.S.O.Pillai, "Solid State Physics", 8th edition, New Age International Publishers, 2018.

Reference Book(s):

1. Shatendra Sharma, Jyotsna Sharma, "Engineering Physics", Pearson Education, 2018

2N. Subrahmanyam, BrijLal, A Textbook of Optics, S. Chand, New Delhi, 2015

3. Kittel, C. —Introduction to Solid State Physics||. Wiley, 2005.

4.. K. Thyagarajan, Engineering Physics, McGraw-Hill Education (India) Pvt. Ltd, 2016.

5. AjoyGhatak, Optics, 5th Edition, McGraw Hill, 2012

6.O. Svelto, "Principles of Lasers", Springer Science & Business Media, 2010.

7. William T. Silfvast, "Laser Fundamentals" 2nd edition, Cambridge University Press, 2004.

8. T. Pradeep, "A Text Book of Nanoscience and Nanotechnology", Tata Mc Graw Hill, 2003

Online Resources:

1. http://www.peaceone.net/basic/Feynman/

2. http://physicsdatabase.com/free-physics-books/

3. http://www.damtp.cam.ac.uk/user/tong/statphys/sp.pdf

4. http://www.freebookcentre.net/Physics/Solid-State-Physics-Books.html

Web Resources:

1. http://link.springer.com/book

2. http://www.thphys.physics.ox.ac.uk

3. http://www.sciencedirect.com/science

4. http://www.e-booksdirectory.com

	NARAYANA ENGINEERING COLLEGE:NELLORE												
20ES1001													
Semester	Н	ours / Wee		Max Marks									
	L	Т	Р										
Ι	3	0	0	48	3	40	60	100					
Pre-requisite: Mathematics Knowledge, Analytical and Logical skills													
Course O	Course Objectives:												
	nderstand th		.	÷	~ ~ ~	ge.							
	earn how to												
	earn the synt												
	earn structur												
Course O	utcomes: A	fter succes	ssful compl	etion of th	e course, th	ne student	will be able	e to:					
CO 1	Understand	the perip	herals, port	s and conn	ecting cable	es and able	to assembl	e the system.					
	[BL- 2]												
CO 2	Apply algo	ithmic app	proach to so	lve compu	tational pro	blems. [BL	-3]						
CO 3	Apply modu	ılar approa	ach for solvi	ng the pro	blems by us	ing the cor	ntrol structu	ures. [BL-3]					
CO 4	Select the in	ndividual d	ata elemen	ts to simpl	ify solutions	and provi	de efficient	memory					
	utilization.	[BL-3]											
CO 5	Develop so	ting algor	ithms for he	eterogeneo	ous data. [B	L-3]							
CO 6	Explain Use	r-Defined	Data Types	and Files. (BL - 2)								

	CO-PO Mapping														
	PO													PSO	
CO	PO	PO	PO	PO	PO	PO	PO 7	PO	PO	PO 10	PO 11	PO 12	PSO	PSO	
	1	2	3	4	5	6	1	8	9	10	11	12	L	4	
CO1	3	3	2	1											
CO2	3	3													
CO3	3	3	3												
CO4	3	3	3												
CO5	3	3	2												
CO6	3	3	1												
	•	•	•	•	1.10		Iedium	3 U	igh		•			-	

1: Low, 2-Medium, 3- High

	COURSE CONTENT	
MODULE – 1	FUNDAMENTALS OF COMPUTERS AND	8h
	PROGRAMMING	

Fundamentals of computers: History of Computers, Generations of Computer, The Computer System - The Input-Process-Output Concept, Components of Computer System, Operating System - Introduction, Objectives, Functions.

Introduction to Programming, Algorithms and Flowcharts: Programs and Programming, Programming languages, Compiler, Interpreter, Structured Programming Concept, Algorithms, Flowcharts, How to Develop a Program.

Fundamental Algorithms: Exchanging the values of Two Variables, Counting, Summation of a setof numbers, Factorial computation, Generation of the FibonacciSequence, Reversing the digits of an integer.

At the end of the Module 1, students will be able to:

- 1. Illustrate the working of a Computer. (BL 2)
- 2. Solve problems using language independent notations. (BL 3)
- 3. Understand the compilers and interpreters. (BL 2)
- 4. Understand Structured Programming. (BL 2)
- 5. Develop algorithms and flowcharts for problems.(BL 3)

MODULE -2	BASIC ELEMENTS OF C	7 h
Basics of C: Introdu	iction, Character Set, Structure of a C Program, A Simple C Program,	Variables, Data
	eclaration, How does The Computer Store Data in Memory, Identif	
Constants, Assignme	· · ·	•
-	pressions: Arithmetic Operators, Relational Operators, Logical Op	erators, Bitwise
_	nal Operator, Comma operator, size of operator, Expressions, L value	
	on- Precedence and Associativity, Type Conversion.	,
	odule 2, students will be able to:	
	the basic structure of a program in C. (BL - 2)	
	tokens in C language.(BL - 2)	
	working of expressions.(BL - 2)	
	the precedence and Associativity rules of operators. (BL - 2)	
	the rules of type conversion. (BL - 2)	
		0 h
MODULE-3	DATA INPUT / OUTPUT AND CONTROL STATEMENTS	<u>8 h</u>
	Basic Screen and Keyboard I/O in C, Formatted Input and Output, Ur	formatted Input
and Output Function		
	Selection Statements - if, Nested if, if-else, Nested if-else, else-if	
	- while, do-while, for, Nested loops, Unconditional Statements - goto,	break, continue,
return.		
	dule 3, students will be able to:	
-	Formatted and Unformatted I/O functions. (BL - 2)	
	Selection Statements. (BL - 2)	
	Looping Statements. (BL - 2)	
	onditional Statements. (BL - 2)	
MODULE-4	FUNCTIONS AND PROGRAM STRUCTURE	8 h
	tion, Using Functions, Passing Arguments to a Function, Working with	Function, Scope
	n, The C Preprocessor.	
0	: Storage classes, Automatic variables, External variables, Static var	iables, Register
variables, Multifile p		
	dule 4, students will be able to:	
	he basic concept of functions. (BL - 2)	
	concept of Recursion and Preprocessor. (BL - 2)	
	age specifiers. (BL - 2)	
MODULE-5	ARRAYS AND POINTERS	9 h
	gs: Introduction, One-Dimensional Array, Multidimensional Arrays, Pa	
Function, Strings -	Declaration, Initialization, Printing Strings, String Input, Character Man	ipulation, String
Manipulation, Array	ys of Strings.	
Pointers: Fundame	entals, Pointer Declarations, Operations on pointers, Passing Pointers	to a Function,
Pointers and Arrays	s, Arrays of Pointers, Pointer to Pointer, Pointer to Functions, Command	line arguments,
Dynamic Memory I	Management.	_
At the end of the Mo	dule 5, students will be able to:	
	he concept of Arrays. (BL - 2)	
	he concept of pointers. (BL - 2)	
	amic Memory Management. (BL -2)	
MODULE-6	USER-DEFINED DATA TYPES AND FILES	8 h
	ions: Basics of Structures, Nesting of Structures, Arrays of Structures	
	and Functions, Self-Referential Structures, Unions, Bit-fields, Enumeration	
	Jsing Files in C, Working with Text Files, Random Accesses to Files of I	
	dule 6, students will be able to:	
	defined data types. (BL - 2)	
-	he concept of Self-Referential Structures. (BL - 2)	
2. Chaoistaila (

3.	Understand the	working of files.	(BL -	- 2)
----	----------------	-------------------	-------	------

Total hours: 48 Hours

1. 2 2. 1 3. 7 Self-Stu									
Conter	Contents to promote self-Learning:								
S. No	Module	Reference							
1	Fundamentals of Computers and Programming	https://nptel.ac.in/courses/106/106/106106127/ [Lec1] https://nptel.ac.in/courses/106/105/106105214/ [Week 1 - Lec 1 To 2] https://nptel.ac.in/courses/106/105/106105171/ [Week 1 - Lec 1 To 4]							
2	Basic Elements of C	https://nptel.ac.in/courses/106/105/106105171/ [Week 1 - Lec5] https://nptel.ac.in/courses/106/105/106105171/ [Week 2 - Lecture 7 To 10] https://nptel.ac.in/courses/106/105/106105171/ [Week 3 - Lec 11 To 14] https://nptel.ac.in/courses/106/106/106106127/ [Lec2] https://nptel.ac.in/courses/106/106/106106127/ [Lec3] https://nptel.ac.in/courses/106/106/106106127/ [Lec4]							
3	Data Input / Output and Control Statements	https://nptel.ac.in/courses/106/106/106106127/ [Lec5] https://nptel.ac.in/courses/106/105/106105171/ [Week 3 - Lec15] https://nptel.ac.in/courses/106/105/106105171/ Week 4 - Lec 16 To 20] [Week 5 - Lec 21 To 25] https://nptel.ac.in/courses/106/106/106106127/ [Lec 6 & 7]							
4	Functions and Program Structure	https://nptel.ac.in/courses/106/105/106105171/ [Week 7 - Lec35] [Week 8 - Lecture 36 To 40] https://nptel.ac.in/courses/106/105/106105171/ [Week 11 - Lec 53 To 54] https://nptel.ac.in/courses/106/106/106106127/ [Lec 20 To 27]							
5	Arrays and Pointers	<u>https://nptel.ac.in/courses/106/105/106105171/</u> [Week 6 - Lec 26 To 30][Week 7 - Lec 32 To 34,48] [Week 12 - Lec 58, 59, 61] <u>https://nptel.ac.in/courses/106/106/106106127/</u> [Lec 9 To 19]							
6	User-Defined Data Types and Files	https://nptel.ac.in/courses/106/105/106105171/ [Week 11 - Lec 55, 56, 57, 60] https://nptel.ac.in/courses/106/106106127/ [Lec 36, 37, 38] https://nptel.ac.in/courses/106/106/106106127/ [Lec60]							

-	
Text B	Book(s):
1.	Pradip Dey, and Manas Ghosh, "Programming in C", 2018, Oxford University Press.
2.	Byron Gottfried, Schaum's Outline of Programming with C, 4 th Edition, 2018, McGraw-Hill
Refere	ence Books :
1.	Brian W. Kernighan, and Dennis M. Ritchie, "The C Programming Language", 2 nd Edition
	Pearson.
2.	Ajay Mittal, Programming in C: A Practical Approach, 3/e, Pearson Publication
3.	SCHILDT and HERBERT, C: The Complete Reference,4th Edition, McGraw Hill, 2020
4.	SOMASHEKARA, M. T., GURU, D. S., MANJUNATHA, K. S., Problem Solving with C,2 ⁿ
	Edition, PHI Learning, 2018
5.	Paul Deitel, Deitel& Harvey Deitel, C How to Program,6 th Edition, Pearson Education
6.	Jeri R. Hanly, Elliot B. Koffman, Ashok Kamthane and A.Ananda Rao, Programming in C and
	Data Structures, 1 st Edition, Pearson Education, 2010.
7.	H.Cheng, C for Engineers and Scientists, Mc.Graw-Hill International Edition Education / PHI
	2009
8.	Yashavant P. Kanetkar, Let us C, 16 th Edition, BBP Publications, Delhi, 2017.
9.	R.G. Dromey, "How to Solve it by Computer". Pearson, 2014.
10	Anita Goel, Computer Fundamentals, Pearson Publication, 2010.
Online	Resources / Web Resources:
1.	https://nptel.ac.in/courses/106/105/106105171/
2.	https://nptel.ac.in/courses/106/106/106106127/
3.	https://www.youtube.com/playlist?list=PLVlQHNRLflP8IGz6OXwlV_lgHgc72aXlh
4.	https://www.youtube.com/watch?v=8PopR3x-VMY
5.	https://www.youtube.com/watch?v=vl794HKeXug
	https://books.goalkicker.com/CBook/
7.	https://www.tutorialspoint.com/cprogramming/index.htm
8.	https://www.programiz.com/c-programming
9.	https://www.javatpoint.com/c-programming-language-tutorial
). <u>https://www.edureka.co/blog/c-programming-tutorial/</u>
11	. <u>https://data-flair.training/blogs/c-tutorial/</u>
	2.https://www.programmingsimplified.com/c-program-examples
	3.https://www.w3schools.in/category/c-tutorial/
14	C Programming Notes for Professionals book : https://books.goalkicker.com/CBook/

NARAYANA ENGINEERING COLLEGE :: NELLORE								
20EN1001		ENGLISH R20						R2020
Semester	Hours / Week		Total hrs	Credit	Max Marks			
	L	Т	Р		С	CIE	SEE	TOTAL
Ι	2	0	0	32	2	40	60	100

Pre-requisite: Knowledge of fundamentals of English Language & Grammar

Course Objectives:

1. To enhance the linguistic and communicative competence.

- 2. To improve the Language proficiency of students in English with an emphasis on Vocabulary, Reading and Writing skills.
- 3. To provide knowledge of grammatical structures & rules and encourage their appropriate use.
- 4. To expose the students to Reading skills and apply the skill & strategies of a successful reader
- 5. To acquaint the students with effective strategies of paragraphs, note making, text editing, review writing and formal correspondence such as letter writing, e mail, and memos.
- 6. To aid the students acquire appropriate and adequate knowledge on writing Technical Reports.

Cou	rse Outcomes: After successful completion of the course, the student will be able to:
CO 1	Practice the formulating appropriate sentences with Grammatical accuracy and also develop concept of word formation(BL3)
CO 2	Describe coherent and unified paragraphs with adequate support and detail and can write a topic sentence, support and concluding sentence. (BL2)
CO 3	Employ the writing and life skills in structural manner of real time scenarios. (BL-2)
CO 4	Explain the grammar rules for synthesis of sentences and use prewriting strategies to plan to write dialogues, reviews and edit the text effectively.(BL - 2)
CO5	Interpret the skills and sub skills of reading and use strategies for reading effectively and provide knowledge on the structure and format of technical writing.(BL - 3)
CO6	Use the concepts of various real time scenarios to represent in an effective model. (BL - 3)

	CO-PO Mapping														
CO						I	PO							PSO	
CO	PO 1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO1										3					
CO2									2	3					
CO3										3					
CO4									2	3					
CO5									3	3					
CO6									3	3					
						1: Low	/, 2-Me	dium, í	3- High						

	COURSE CONTENT								
Module – I	GRAMMAR& VOCABULARY BUILDING	6h							
Grammar :Parts of	f speech: Noun (Countables & Uncountables, Singulars & Plu	urals, Kinds of Nouns),							
	verb, Adjective - Kinds of Sentences & Sentence Structures - G	Question forms – Word							
order in Sentence									
	ng : Concept of word formation – Synonyms & Antonyms – Hon	•							
	s – Commonly confused Words – One word substitutes – Idioms a	& Phrasal Verbs							
	odule 1, students will be able to:								
-	depth knowledge on basic grammar concepts.								
	2. Understand the meaning of suffixes & Prefixes, idioms and phrasal verbs.								
	ing and usage of Vocabulary.								
Module – II	GRAMMAR&WRITING -I	8h							
÷	et Verb agreement – Pronoun-antecedent agreement – Verbs:	auxiliary verbs							
(Primary & Modal)-		of thoughtan Contanao							
	of writing: clarity, simplicity, brevity, single focus, organization he sentences - sequencing the ideas - introduction and conclusion	-							
-	Sodule II, students will be able to:	- I unctuation.							
	sentences clearly.								
	the usage of grammar.								
 Learn the importance of use of Auxiliary verbs. 									
Module – III	GRAMMAR&WRITING-II	10h							
	k Indirect Speech – Active and Passive Voice – Comparison of A								
Prepositions	a multer speech – Active and Passive Voice – Comparison of A	ujectives – Afficies –							
-	Writing - Phrases & Clauses - Conditionals - Business letters and	d Emails and							
	template of common business letters and emails: inquiry/ complain								
	emplate of common business fetters and chains. inquiry, complain								
At the end of the M	odule III, students will be able to:								
	and learn the nuance of writing business letters, e-mails, memos a	nd effective paragraphs							
	devices of coherence & cohesion with adequate support & detail	1 0 1							
	e of prepositions and active & passive voice in engineering and s	cientific contexts.							
Module – IV	GRAMMAR&WRITING-III	10h							
	Verb – Cause and effect – Verb noun Collocations & adject errors in grammar and usage - Misplaced modifiers, idiomatic exp								
U U	king- organizing techniques: providing a suitable title, heading								
-	ring - Paraphrasing -techniques of paraphrasing: Replacement								
change of sentence s		or words and pinuses,							
•	odule IV, students will be able to:								
	the usage of phrases and clauses in sentences								
2. Learn gram	natical rules to encourage their appropriate use in writing								
-	te effective note making and paraphrase								
Module – V	GRAMMAR&WRITING-IV	8h							
	n formation (Wh- questions, Yes or No questions, Tag question								
-	x Sentences - Correcting common errors in grammar and usage	,							
· ·	ort texts - Dialogue writing - Writing Definitions (short and long)	– compare and contrast							
	of Reviews : Book / Play / Movie - focus on appropriate voc	-							
	special vocabulary and idioms used	-							

At the end of the Module V, students will be able to:

- 1. Acquire the knowledge of applying the grammatical rules for synthesis of sentences
- 2. Learn to write dialogues for various contexts
- 3. Learn to edit the text and writing reviews

6h	

Reading Skills :Types of reading: Skimming, Scanning, Intensive & Extensive Reading - Effective Reading-Tips

READING SKILLS

Reading Comprehension

Scramble Sentences

Module – VI

Complete the passage using contextual clues

Identifying Main Ideas using Scanning Technique

Identifying Specific Ideas using Skimming Technique

Writing :Describing – Report Writing: definition - purpose – types – structure - formal and informal reports - stages in developing report- proposal, progress and final reports –examples

At the end of the Module VI, students will be able to:

- 1. Master the skills and sub skills of reading
- 2. Learn the structure and format of technical reports
- 3. Learn to write description of things, process, places and persons

Content beyond syllabus:

Self-Study:

Contents to promote self-Learning:

SNO	Торіс	CO	Reference
1	Vocabulary for Aptitude & Recruitment	CO1	https://youtu.be/uzvZa2qEuWo
1	Tests Campus Jobs		
2	Tips to Improve Verbal and Written	CO2	https://youtu.be/6Y3NY0ERBxY
Z	Communication Skills		
3	How to write professional emails in	CO3	https://youtu.be/3Tu1jN65slw
5	English		
4	Introduction to Collocation	CO4	https://youtu.be/-ouWOpo2Uh8
4			
5	Error Spotting Questions in Campus	CO5	https://youtu.be/Rz6-qjNrzCU
5	Recruitment Tests		
6	Reading Skills: How To Skim, Scan and	CO6	https://youtu.be/SRHNKzXxu60
U	Read for Detail Effectively		

Text Books:

- 1. Green, David Contemporary English Grammar –Structures and Composition, MacMillan India, 2014
- 2. Raymond Murphy's English Grammar with CD, Murphy, Cambridge UniversityPress,2012
- 3. Michael Swan, (2017) Practical English Usage (Practical English Usage), 4th edition, UK:OxfordUniversityPress.
- 4. Ashraf, M Rizvi. Effective Technical Communication. Tata McGraw-Hill,2006.

Reference Books

- 1. English Conversation Practice Grant Taylor, Tata McGraw Hill, 2009.
- 2. Hewings, Martin. Cambridge Academic English (B2). CUP,2012
- 3. Meenakshi Raman and Sangeeta Sharma, Professional Communication, Second Edition, Oxford University Press, India,2017
- 4. Michael McCarthy, Felicity O'Dell, (2015) English Vocabulary in Use Advanced(South Asian Edition), UK: Cambridge UniversityPress
- 5. Spoken English, R.K. Bansal & JB Harrison, Orient Longman, 2013, 4Thedition.

Web References:

- 1. Grammar/Listening/Writing1-language.com
- 2. <u>http://www.5minuteenglish.com/</u>
- 3. <u>https://www.englishpractice.com/</u>

<u>Grammar/Vocabulary</u>

- 1. English Language LearningOnline
- 2. <u>http://www.bbc.co.uk/learningenglish/</u>
- 3. <u>http://www.better-english.com/</u>
- 4. <u>http://www.nonstopenglish.com/</u>
- 5. <u>https://www.vocabulary.com/</u>
- 6. BBC Vocabulary Games
- 7. Free Rice VocabularyGame

<u>Reading</u>

- 1. https://www.usingenglish.com/comprehension/
- 2. <u>https://www.englishclub.com/reading/short-stories.htm</u>
- 3. <u>https://www.english-online.at/</u>
- 4. <u>https://learningenglish.voanews.com/z/3613</u>
- 5. http://www.englishmedialab.com/listening.html

<u>Speaking</u>

- 1. <u>https://www.talkenglish.com/</u>
- 2. BBC Learning English Pronunciation tips
- 3. Merriam-Webster Perfect pronunciationExercises

<u>All Skills</u>

- 1. <u>https://www.englishclub.com/</u>
- 2. <u>http://www.world-english.org/</u>

<u>Online Dictionaries</u>

- 1. Cambridge dictionary online :<u>https://dictionary.cambridge.org/</u>
- 2. MacMillan dictionary : <u>https://www.macmillandictionary.com/</u>
- 3. Oxford learner's dictionaries : <u>https://www.oxfordlearnersdictionaries.com/</u>

	Ν	NARAYA	NA ENGIN	EERING	COLLEGI	E:NELLOI	RE			
20PH1501			APPLIE	ED PHYS	ICS LAB			R2020		
Semester	H	lours / We	ek	Total	Credit		Max Mar	rks		
	L T P hrs C CIE SEE TOTA									
I 0 0 3 36 1.5 40 60 100										
Pre-requisi	Pre-requisite: Nil									
Course Ob	jectives:									
1. To pr	ovide stud	ent to lear	rn about so	me impor	tant experir	nental tech	iniques in	physics with		
knowle	dge in theo	retical asp	ects so that	they can ex	cel in that j	particular fi	ield. To pre	pare students		
for perf	forming req	uirement a	analysis and	design of	variety of a	oplications.				
2. To ena	ble the stu	idents to	understand	the conce	epts of inte	rference an	nd diffracti	ion and their		
applica	tions.				-					
3. To edu	cate studen	ts to reco	ognize the a	pplications	of laser in	finding the	wavelengt	th, slit width		
and its	role in diffi	action stu	dies			C C	C C			
4. To mak	the stude	nts to unde	erstand the	important	parameters of	of optical fi	bres and m	etals		
Course Ou	tcomes: At	fter succes	sful comp	letion of th	ne course, tl	he student	will be abl	e to:		
CO 1	Understa	nd the im	portance of	f optical pl	nenomenor	n like Inter	ference, di	ffraction and		
	Understand the importance of optical phenomenon like Interference, diffraction and dispersion									
CO 2	•		ole of lasers	in diffrac	tion and the	e imnortan	ce of ontic	al fiber		
001	paramete									
CO 3	•		rtance of a		in the stur	hu of cord.				
003	-	•		energy gap	in the stud	iy of condu	ictivity and	Hall Effect		
		conductor	•							
CO 4	-	•	ance of fou	r probe m	ethod in d	eterminati	on of resis	tivity of a		
	given sen	niconduct	or							

CO-PO Mapping															
СО	PO													PSO	
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	
CO1	3	1										2			
CO2	3	1				1						2			
CO3	3	1				1						2			
CO4	3	1										2			
					1: Lo	w. 2-M	ledium	. 3- Hi	igh						

1: Low, 2-Medium, 3- High

COURSE CONTENT							
Task -1: Determination of Hall voltage and Hall coefficient of a given semiconductor using	1						
Hall effect.							
The objective :To determine	CO						
a) sign of the charge carriers,	1						
b) charge carrier concentration,							
c) mobility of the charge carriers of a given semiconductor							
Task - 2: To determine the resistivity of semiconductor by Four probe method							
Objective:To determine the resistvity of semiconductor by Four probe method	CO						
	1						
Task -3: Determine the energy gap of a given semiconductor diode.							
Objective: To plot characteristics between reverse saturation current and 103 /T and find out the	e CO						
approximate value of Energy Band Gap in PN junction diode	1						
TASK -4: Measurement of radius of curvature of a lens by Newton's rings method.							

Objectives. The determines the successful of an discussibility by North 20 Discuss of a discussion of the discussion of	CO
Objective:To determine the wavelength of sodium light by Newton's Ring method	CO
The key idea behind Newtons ring experiment is the thin film formation between a plane-	2
convex lens and a glass plate. Due to this thin film of air a path difference occurs in the waves	
which reflect from the lower surface of the lens and the top surface of the glass plate. As a	
result of it, they superimpose and develop the interference pattern.	
TASK -5: Determine the thickness of the wire using wedge shape method	
Objective: To calculate the thickness of a thin wire by forming interference fringes using an air	
wedge arrangement.	2
The key idea behind this experiment is the formation of thin wedge shaped film between two plane	
glass plates. Due to this thin film of air, a path difference occurs between waves reflected from top	
and bottom surface of the film. On superimposition of these waves an interference pattern	
containing a number of straight line fringes will be produced	
TASK-6: Determination of wavelength by plane diffraction grating normal incidence method	
Objectives: 1.To understand the types of diffraction	CO
2. To familiarize with the principle of diffraction in plane transmission grating	2
3. To know the procedure for standardization of the grating	
4. To determine the wavelengths of prominent spectral lines of mercury spectrum.	
An arrangement, which is equivalents in its action to a large number of parallel slits of same width	
separated by equal opaque spaces is called diffraction grating. It is constructed by ruling fine	
equidistant parallel lines on an optically plane glass plate with the help of a sharp diamond point.	
TASK -7: Dispersive power of a diffraction grating	
objective: To determine Dispersive power of a diffraction grating	CO
When white light passes through a grating, different wavelengths undergo different angles of	2
diffraction. Hence white light split up into different colours and diffraction spectra of different	
orders will be produced. The angular dispersion or dispersive power of a grating is defined as the	
rate of change of angle of diffraction with the change of wavelength in a particular order of the	
spectrum.	
TASK -8: Determination of wavelength of LASER light using diffraction grating	
Objectives :1. To determine the concept of diffraction	CO
2. To determine the wavelength of the given Laser source.	3
TASK -9:Laser: Diffraction at a single slit	
Objective:Determination of width of a given single slit using laser diffraction method	CO
Laser beam has high monochromaticity, coherence and directionality. Hence it forms a clear	
diffraction pattern and we can measure width of a single slit accurately.	
TASK -10 Laser: Diffraction at a double slit	
	CO
Objective:Determination of width of a given double slit using laser diffraction method. With this experiment we can demonstrate diffraction nature of lasers and measure width of a double	CO 2
slit accurately.	3
Additional Experiments:	
TASK -11 To determine the numerical aperture and acceptance angle of a given optical fibre	├───
TASIX -11 10 determine the numerical aperture and acceptance angle of a given optical more	

Objective: To determine the numerical aperture and acceptance angle of a given optical fiber. CO In optical fibres light travel by multiple total internal reflections. Numerical aperture represents light gathering powerof optical fibre. Acceptance angle represents maximum limiting angle at one end of optical fibre for the light ray to travel by multiple total internal reflections through the core region of thefibre.

1. Optical fibers may be used for accurate sensing of physical parameters and fields like pressure, temperature and liquid level.

2. For military applications like fiber optic hydrophones for submarine and underwater sea application and gyroscopes for applications in ships, missiles and aircrafts.

CO4

TASK -12: Determination of Fermi energy of a metal.

Objective: To determine Fermi energy of a metal.

Fermi energy represents highest energy level occupied by the electron at 0 K in a metal.

Virtual lab: 1) Laser beam divergence and spot size

https://vlab.amrita.edu/?sub=1&brch=189&sim=342&cnt=1

2. Michelson's Interferometer- Wavelength of laser beam

https://vlab.amrita.edu/?sub=1&brch=189&sim=1106&cnt=1

3.Anderson's Bridge

https://vlab.amrita.edu/?sub=1&brch=192&sim=859&cnt=1

Text Book(s):

1. C. L. Arora, "Practical Physics", S. Chand & Co., New Delhi, 3rd Edition, 2012.

2. Vijay Kumar, Dr. T. Radhakrishna, "Practical Physics for Engineering Students", S M Enterprises, 2nd Edition, 2014.

Reference Book(s):

- 1. S. Balasubramanian, M.N. Srinivasan "A Text book of Practical Physics"- S Chand Publishers, 2017.
- 2. C.H. Bernard and C.D. Epp, John Wiley and Sons, "Laboratory Experiments in College Physics" Inc., New York, 1995.
- 3.Dr.Ruby Das, C.S.Robinson, Rajesh Kumar and Prasanth Kumar "A text book of Engineering Physics Practical", 1st edition, Sahu University Science Press, 2010.

4. Jayaraman, "Engineering Physics Laboratory Manual", 1st edition, Pearson Education, 2014.

Web Resources:

1. https://www.scribd.com/doc/143091652/ENGINEERING-PHYSICS-LAB.

2. https://www3.nd.edu/~wzech/LabManual 0907c.pdf.

3. https://www.morebooks.de/store/gb/book/engineering-physics-lab-manual/isbn/978-3-330-34402.

	1	NARAYAN	IA ENGI	NEERING	COLLEGI	E:NELLO	RE			
20EN1501		ENGLISH LANGUAGE LAB R2020								
Semester	Hours / Week			Total hrs	Credit	Max Marks				
	L	Т	Р		С	CIE	SEE	TOTAL		
Ι	0	0	3	48	1.5	40	60	100		
Pre-requisit	e:Basic E	nglish Gra	mmar			<u> </u>				

Course Ob	instinger
Course Ob	
1.	To expose the students to develop knowledge and awareness of English phonetics be able to read and produce phonemictranscriptions
2.	To sensitize the students to the nuances of English speech sounds, word accent, intonation and rhythm
3.	To develop strategies appropriately to improve one's ability to listen and Use listening skills to create more effective, less confrontational, more productive professional and personal
	communication
	To demonstrate his/her ability to write error free writtencommunication
5.	To distinguish main ideas from specific details and make use of contextual clues to infer meanings of unfamiliar words fromcontext
6.	To provide a structured methodology for participants to prepare and deliver an effective,
	high impact presentation that meets the objectives and bringsresults
Cor	urse Outcomes: After successful completion of the course, the student will be able to:
CO 1	Understand how speech sounds are used to create meaning. Apply their knowledge of English phonetics and phonology to improve their own pronunciation.
CO 2	
02	Recognize and use pitch patterns to signal complete and incomplete thought groups and
	Speak confidently and intelligibly within groups and before an audience.
CO 3	
005	Discuss and respond to content of a lecture or listening passage orally and/or in
	writing and make inferences and predictions about spoken discourse
CO 4	Produce coherent and unified paragraphs with adequate support and detail and can write a
	paragraph with a topic sentence, support, and concluding sentence

						CO-P	O Ma	pping						
	PO											PSO		
СО	PO 1	PO 2	РО	РО	РО	PO	PO	PO	PO	РО	PO	PO	SO 1	PSO 2
			3	4	5	6	7	8	9	10	11	12		
CO1									2	3				
CO2									3	2				
CO3									3	3				
CO4									3	2				
					1: L	ow, 2-	Mediu	m, 3- I	ligh					

COURSE CONTENT	
Module - 1	
Introduction to Phonetics :	
IntroductiontoSounds of Speech – Vowels – Consonants -	CO1
Listening with a focus on pronunciation	
Reading Newspaper – Highlighting Vowels and Consonants	
Module – 2	
Syllabification:	
Word Stress, Rules of word stress	
Practice on Intonationand Stress	CO2
Module – 3	
Listening Skills :	
Types of Listening Skills	

Active listening and anticipating the speaker	CO3
Listening for Specific & General Details	
Listening Comprehension	
Module – 4	
Defining & Describing: Objects, Places and Events	
VideoSpeech Writing	CO4
Review Writing (Books / Movies / Productsetc.,)	
Module – 5	
Reading Comprehension	
Everyday English – Grammar, Vocabulary, LSRW Skills,	
Summarizing and Note making	CO5
Vocabulary Building	
Module – 6	
JAM	
Role Play	
Giving and Asking Directions	CO6
Information Transfer	

- A Textbook of English Phonetics for Indian Students 2nd Ed T.Balasubramanian.(Macmillian),2012
- 2. SkillfulLevel2Reading&WritingStudent'sBookPack(B1)MacmillanEducational.

Reference Book(s): English Pronunciation in Use. Intermediate & Advanced, Hancock, M. 2009.CUP

1.Rizvi,Ashraf.M.,EffectiveTechnicalCommunication,McGrawHill,NewDelhi.2005 2Raman, Meenakshi &Sangeetha Sharma. Technical Communication: Principles and Practice, Oxford University Press, New Delhi.2011

Web References:

- 1. Grammar/Listening/Writing 1-language.com
- 2. http://www.5minuteenglish.com/
- 3. https://www.englishpractice.com/ Grammar/Vocabulary
- 4. English Language Learning Online
- 5. <u>http://www.bbc.co.uk/learningenglish/</u>
- 6. <u>http://www.better-english.com/</u>
- 7. <u>http://www.nonstopenglish.com/</u>
- 8. <u>https://www.vocabulary.com/</u>
- 9. BBC Vocabulary Games
- 10. Free Rice Vocabulary Game Reading
- 11. https://www.usingenglish.com/comprehension/
- 12. https://www.englishclub.com/reading/short-stories.htm
- 13. https://www.english-online.at/ Listening
- 14. https://learningenglish.voanews.com/z/3613
- 15. http://www.englishmedialab.com/listening.html Speaking
- 16. https://www.talkenglish.com/
- 17. BBC Learning English Pronunciation tips
- 18. Merriam-Webster Perfect pronunciation Exercises All Skills
- 19. https://www.englishclub.com/
- 20. http://www.world-english.org/

	NARAYANA ENGINEERING COLLEGE: NELLORE	
20ES1502	ELECTRONICS AND COMMUNICATION ENGINEERING	R2020
	WORKSHOP	

21. http://learnenglish.britishcouncil.org/

Online Dictionaries

- Cambridge dictionary online :<u>https://dictionary.cambridge.org/</u>
- MacMillan dictionary :<u>https://www.macmillandictionary.com/</u>
- Oxford learner's dictionaries :<u>https://www.oxfordlearnersdictionaries.com/</u>

Semester	Н	ours / Wee	k	Total	Credit		Max Mar	ks			
	L	Т	Р	hrs	С	CIE	SEE	TOTAL			
Ι	0	0	2	32	1	40	60	100			
Pre-requisite:											
Course Ob	jectives:										
1.	To introduc	e electroni	c compone	nts, measu	ring instrun	nents and to	ols used in				
	Electronicw	orkshop.									
2.	To equip w	ith the kno	wledge of u	understandi	ing data she	ets of electr	onic comp	onents.			
3.	To give pra	ctical expe	rience on s	oldering th	e electronic	component	ts on a PCE	3			
4.	To introduc	e EDA too	ls and TIN	A Software	e						
5.	To provide	knowledge	e about the	different ty	pes of trans	smission me	dia such as	guided			
	and unguide	ed media.			-			-			
Course Ou	itcomes: A	fter succes	sful compl	letion of th	e course, t	he student v	will be able	e to:			
CO 1	Understar	nd the safe	ty aspects i	n using the	e tools and	equipments	5. (BL-2)				
	Apply basi	ic electrica	l engineerir	ng knowled	lge to make	simple hou	use wiring o	ircuitsand			
CO 2	check their functionality.(BL-3)										
CO3	Understar	nd to disass	semble and	assemble	a Personal	Computer a	nd prepare	e the			
	computer	ready to u	se (BL-2)\								
CO 4	Apply kno	wledge to	Interconne	ct two or n	nore compu	iters for info	ormation sl	naring (BL-3)			

					C	CO-PC) Map	ping						
CO	PO								PS	PSO				
	PO	PO	PO	PO	PO	PO	РО	PO	PO	PO	PO	PO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	2												
CO2	3	2												
CO3	3	2		1										
CO4	2	2												
	1: Low, 2-Medium, 3- High													

1: Low, 2-Medium,	3-	High
-------------------	----	------

COURSE CONTENT	СО	
Task-1: Familiarization of commonly used tools in Electronics and Communication.		
Objective: To introduce tools used in Electronics and Communication.		
Task-2: Familiarization of Electronic Measuring Instruments	CO 1	
Objective : To introduce measuring instruments used in Electronics and Communication.		
Task-3: Familiarization/Identification of electronic components	CO 1	
Objective: To introduce electronic components used in Electronics.		
Task-4: Testing of electronic components	CO 2	
Objective: To introduce Testing Procedure used for Electronic components		
Task-5: Study of Cathode Ray Oscilloscope (CRO)	CO 1	
Objective: To study controls of CRO and measure Amplitude, Frequency and Phase of time		
varying signals.		

Task-6: Single Side PCB Fabrication CO 2

CO 3
CO 2
CO 2
CO 4
CO 2
CO 3
CO 1
CO 4

- 1. G. Kennedy, B. Davis and Srm Prasanna," Electronic Communication Systems", TMH.
- 2. R S Khandpur, Printed Circuit Boards- Design Fabrication, Assembly and Testing, Tata Mc Graw Hill Publishing Company Limited, Ist edition 2008.
- 3. TINA/ORCAD.PADS software User manual.
- 4. R.S. Sedha, "A Texk Book of Applied Electronics", S. Chand Publication.

Reference Book(s):

- 1. R.S. Sedha, "A Texk Book of Electronic Circuit", S. Chand Publication.
- 2. Dr K N Hari Bhat and Dr D Ganesh Rao, "Principles of Communication Systems", Cengage India.
- 3. Raghunandan G H, Raju hajare, "An Introduction to Basic Electronics Concepts and Applications Concepts and Applications", Cengage Publications

Web References:

- 1. https://en.wikipedia.org/wiki/Electronic_test_equipment
- 2. https://www.electronicshub.org/basic-electronic-components/
- 3. https://www.makerspaces.com/basic-electronics/
- 4. https://predictabledesigns.com/electronic-lab-setup-tools-and-equipment-requirements/

20ES1505					<u>LEGE:NEI</u> /ORK SHC			R2020
20151505								K2020
	PART – A ENGINEERING WORK SHOP Hours / Week Total Credits Max Max							
Semester	L	T	P	hrs	Credits	CIE	TOTAL	
II	0	0	4	64	2	40	SEE 60	101112
Pre-requisite:	-	-	4	04	2	40	00	100
CourseObject		maties.						
1.To know b		nop process	es and ador	ot safety pr	actices whil	e working	with	
	olsandequi		1					
2. To identify	-	·	s marking,	measuring,	holding, stu	riking and	cutting	
•	uipments.					C	C	
3.Toknowab	outtheinterr	nalpartsofac	omputer,as	ssemblinga	computerfro	omtheparts	,preparing	ga
		stallingtheo						
4.Togainkno	U	0			· 1	-		
					acilityforBr			g
CourseOutcor								
	0	•		tal objects	by surface c	levelopme	ent and jo	in the metals
	<u> </u>	sired shape	· /					
		Computer	and Install	operating	systems an	d prepare	the comp	outer ready to
	(BL-3)							
				-		-		/indows and
acce	ss the Inter	net & test I	nterconneo	ct two or m	ore comput	ters for inf	ormation	sharing.(BL-3
	C	COURSE C	ONTENT	(TRADES	S FOR PRA	CTICE)		
Frade -1 Carpe	ntry							
- Familiaritywithd		sofwoodsar	ndtoolsused	linwoodwo	rkingandma	kefollowi	ngjointsfr	omoutof
300x40x25mmsc					0		23	
a) Half-Lapjoin	nt.							
b) MortiseandT	enonjoint							
Frade-2 Fitting	-							
i.]Familiarity w		t types of to	ols used in	fitting and	do the fitti	ng exercise	es out of 8	80 x 50 x 5 m
M.S. stock		cypes of to		i inting und			25 041 01 0	50 X 50 X 5 III
a) V-fit b) Dov	etail fit							
Frade - 3 Sheet		·k						
			a wood in al	haat matal	wonling De		to of follo	wing cheat
Familiarity with metal job from				neet metar	working, De	evelopmen		Swing sheet
-			J.I. Sheet					
a) Tapered tray	b) Conical	funnel						
Frade - 4 Elect	rical Hous	e Wiring						
Familiarities wi	th different	types of ba	sic electric	al circuits a	and make			
thefollowingele	ctricalconn							
a) Two lamps in								
b) Two way swi	itch							
c) Tube light	monollol		1	ahaa				

d) Two lamps in parallel with 3 pin plug and switches

Trade 5 – Welding

Familiarity with different types of tools used in welding and do the following welding exercises

1. Single V butt joint

2. Lap joint

Text Book(s):

- Hajra Choudhury S.K., Hajra Choudhury A.K., Nirjar Roy S.K. "Elements of WorkshopTechnology"Vol-I2008&Vol-II2010MediaPromoters&Publishers Pvt.Limited,Mumbai.
- KalpakjianS.andStevenS.Schmid, "ManufacturingEngineeringand Technology" 4thEdition, Pearson Education IndiaEdition, 2002.
- 3. P. Kannaiah&K. L. Narayana "Workshop manual" 2ndEd., ScitechpublicationsPvt.Ltd.,Hyderabad,2008.

Reference Book(s):

1. Gowri P., Hariharan and Suresh Babu A., "Manufacturing Technology-I", Pearson Education2008.

WebResources:

- 1. https://www.muet.edu.pk/sites/default/files/images/users/41/Workshop%20Intro.pdf
- 2. <u>http://ecoursesonline.iasri.res.in/mod/page/view.php?id=98826</u>

	PART-B IT WORKSHOP LAB								
Course	e Objectives:								
1.	 To provide Technical training on Productivity tools like Word processors, Spreadsheets, Presentations. 								
2.	2. To make the students know about the internal parts of a computer, assembling, installing the operating system.								
	To teach connecting two or more computers.								
Course	e Outcomes: After successful completion of the course, the student will be able to:								
CO 1	Design and development of sheet metal objects by surface development and join the metals for obtaining desired shape.(BL-3)								
CO 2	Build a Personal Computer and Install operating systems and prepare the computer ready to use.(BL-3)								
CO 3	Develop presentation and documentation of a given tasks through Microsoft Windows and access the Internet & test Interconnect two or more computers for information sharing.(BL-3)								

	CO-PO Mapping													
	РО								PS	PSO				
	PO	PO							PSO	PSO				
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	1								2	2				
CO2	2								2	2			2	2
CO3	2								2	1			2	
	1: Low, 2-Medium, 3- High													

COURSE CONTENT	CO
Task-1 Learn about Computer	
Identify the internal parts of a computer and its peripherals. Represent the same in the form of diagrams including Block diagram of a computer. Write specifications for each part of a computer including peripherals and specification of Desktop computer. Submit it in the form of a report.	CO 1
Task -2 Assembling a Computer	
Disassemble and assemble the PC back to working condition. Troubleshoot the computer and identify working and non-working parts. Identify the problem correctly by various methods available (eg: beeps). Record the process of assembling and trouble-shooting a computer.	CO 1
Task-3 Install Operating system	CO 1
Install Linux, any other operating system (including proprietary software) and make the system	
dual boot or multi boot. Record the entire installation process.	
Task-4 Operating system features	CO 1
Record various features that are supported by the operating system(s) installed. Submit a report on	
it. Access CD/DVD drives, write CD/DVDs, access pen drives, print files, etc. Install new	
application software and record the installation process.	
Task-5 Word Processor	CO 2
Create documents using the word processor tool. Tasks to be performed are inserting and deleting	
the characters, words and lines, Alignment of the lines, Inserting header and Footer, changing the	
font, changing the colour, including images and tables in the word file, making page setup, copy	
and paste block of text, images, tables, linking the images which are present in other directory,	
formatting paragraphs, spell checking, etc. Prepare project cover pages, content sheet and chapter	

CO 2
CO 2
CO 3

Additional Experiments:	
Task -1 IoT	CO 3
Raspberry Pi Study the architecture of Raspberry pi, configure software, Install SD card, Connect the cables, Install Raspbian (or any other) operating system, Configure Wi-Fi, Remotely connect to your Raspberry Pi.	
Task -2 Outlook, Macros	CO 3
Practice the following tasks and submit report	
A. Configure outlook and access mails.	
B. Create Macros in word and spreadsheet tools	

1. B.Govindarajulu, "IBM PC and Clones Hardware Trouble shooting and Maintenance",2nd edition, Tata McGraw-Hill, 2002

- 2. "MOS study guide for word, Excel, Powerpoint& Outlook Exams", Joan Lambert, Joyce Cox, PHI.
- 3. "Introduction to Information Technology", ITL Education Solutions limited, Pearson Education.

Reference Book(s):

- 1. Rusen, "Networking your computers and devices", PHI
- 2. Bigelows, "Trouble shooting, Maintaining & Repairing PCs", TMH.

On-line/Web Resources:

https://turbofuture.com/computers/Dissassembling-and-Assembling-the-computer-system https://www.instructables.com/id/Disassemble-a-Computer/

https://www.windowscentral.com/how-do-clean-installation-windows-10

https://www.tutorialspoint.com/ms_excel_online_training/index.asp

https://www.raspberrypi.org

NARAYANA ENGINEERING COLLEGE::NELLORE										
20ES1506	I	PROBLEM SOLVING AND PROGRAMMING LAB R20								
Semester	H	Hours / Week Total Credit Max Marks						·ks		
	L	Т	Р	hrs	С	CIE	SEE	TOTAL		
Ι	0	0	3	30	1.5	40	60	100		
Pre-requisite: Mathematics Knowledge, Analytical & Logical Skills										
Course Ob	iectives									

Course Objectives:

- 1. To work with the compound data types

- To work with the compound data types
 To explore dynamic memory allocation concepts
 To able to design the flowchart and algorithm for real world problems
 To able to write C programs for real world problems using simple and compound data types
 To employee good programming style, standards and practices during program development

Course Outcomes: After successful completion of the course, the student will be able to:							
CO 1 Translate algorithms into programs (In C language) (BL - 2)							
CO 2	Solve the problems and implement algorithms in C. (BL - 3)						
CO 3 Make use of different data types to handle the real time data (BL - 3)							

	CO-PO Mapping													
	PO								PSO					
	PO	PO							PSO	PSO				
СО	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	3	3											
CO2	3	3	3											
CO3	3	2	3	3										
	1: Low, 2-Medium, 3- High													

COURSE CONTENT	CO				
Task-1					
 Practice DOS and LINUX Commands necessary for execution of C Programs. Study of the Editors, Integrated development environments, and Compilers in chosen platform. Write, Edit, Debug, Compile and Execute Sample C programs to understand the 	CO 1				
programming environment.					
Task-2	CO 1				
1. Practice programs: Finding the sum of three numbers, exchange of two numbers, largest of two numbers, to find the size of data types, Programs on precedence and associativity of operators, sample programs on various library functions.					
Task-3					
 Write a C program to calculate the factorial of a given number Fibonacci sequence is defined as follows: the first and second terms in the sequence are 0 & Subsequent terms are found by adding the preceding two terms in the sequence. Write a Cprogram to generate the first n terms of the sequence. Write a program to find the roots of a Quadratic equation. 	CO1				
Task-4					
 Write a program to generate the series of prime numbers in the given range. Write a program to reverse the digits of a number. Write a C program to find the sum of individual digits of a positive integer. 	CO 2				

	-
Task-5	
1. Write a program to check for number palindrome.	CO 2
2. Write a program to find the maximum of a set of numbers.	
3. Write a C program to find the GCD (greatest common divisor) of two given integers	
Task-6	
1. Write a program to find the sum of positive and negative numbers in a given set of numbers.	CO 3
2. Write C code to reverse the elements of the array. For example, [1,2,3,4,5] should become	
[5,4,3,2,1]	
3. Write a C program to find factorial of a given integer number using recursion	
Task-7	
1. Write a C program that use pointers to find Addition of Two Matrices	CO 3
2. Write a C program that use functions to find Multiplication of Two Matrices	
Task-8	
1. Write a program to accept a line of characters and print the number of Vowels, Consonants,	CO 3
blank spaces, digits and special characters.	
2. Write a C program to check whether a given string is a palindrome or not, without using	
anybuilt-in functions.	
Task-9	
1. Illustrate the use of auto, static, register and external variables.	CO 4
2. Write a program to read and print student information using structures	
3. Write a C program to define a union and structure both having exactly the same numbers	
using the size of operators print the size of structure variables as well as union variable	
Task-10	
1. Write a program to split a "file" into two files, say file1 and file2. Write lines into the 'file'	CO 4
from standard input. Read the contents from 'file' and write odd numbered lines into file1 and	
even numbered lines into file2.	
2. Write a program to merge two files.	

Additional Experiments	Ι
Task-1	
1. Programs on bitwise operators.	CO4
2. Programs on bit fields.	
Task-2	
1. Write a program to read a set of strings and sort them in alphabetical order.	CO 4
2. Programs on implementation of structures using files.	

Virtual Labs:

1. Problem Solving Lab (IIIT HYDERABAD) :http://ps-iiith.vlabs.ac.in/									
List of Experiments									
1. Numerical Representation	6. <u>Recursion</u>								
2. <u>Beauty of Numbers</u>	7. Advanced Arithmetic								
3. More on Numbers	8. Searching and Sorting								
4. <u>Factorials</u>	9. Permutation								
5. <u>String Operations</u>	10. <u>Sequences</u>								
2. Computer Programming Lab (IIIT HYDERABAL): <u>http://cse02-iiith.vlabs.ac.in/</u>								
List of Ex	periments								
1. Numerical Approximation	6. Basic Control Flow								
2. Functions	7. Pointers								
3. Advanced Control Flow	8. Recursion								
4. Arrays	9. Expression Evaluation								

5. Structures	
---------------	--

- 1. "How to Solve it by Computer", R.G. Dromey, 2014, Pearson.
- 2. Programming in C and Data Structures, J.R.Hanly, Ashok N. Kamthane and A.Ananda Rao, Pearson Education, 1st Edition, 2010.

Reference Book(s):

- 1. "The C Programming Language", Brian W. Kernighan, Dennis M. Ritchie, 2nd Edition, Pearson.
- 2. "Let us C", YeswantKanetkar, BPB publications
- 3. "Pointers in C", YeswantKanetkar, BPB publications, 16th Edition, 2017
- 4. Computer Science, A Structured Programming Approach Using C by Behrouz A. Forouzan& Richard F. Gilberg, 3rd Edition, Cengage Learning
- 5. C Programming A Problem-Solving Approach, Behrouz A. Forouzan& E.V. Prasad, F. Gilberg, 3rd Edition, Cengage Learning
- 6. Programming with C RemaTheraja, Oxford, 2018
- 7. Programming in C, 3rd Edition, 2015, Ashok N. Kamthane, Pearson Education
- 8. Programming in C, 3/e : A Practical Approach by Ajay Mittal, Pearson Publication
- 9. Problem Solving with C by SOMASHEKARA, M. T., GURU, D. S., MANJUNATHA, K. S., PHI Learning, 2nd Edition, 2018
- 10. C Programming with problem solving, J.A. Jones & K. Harrow, Dreamtech Press, 2001
- 11. Byron Gottfried, Schaum's Outline of Programming with C, 4th Edition, 2018, McGraw-Hill

Veb Resources:

- 1. https://www.includehelp.com/c-programs/advacnce-c-examples.aspx
- 2. https://www.programiz.com/c-programming/examples
- 3. https://www.javatpoint.com/c-programs
- 4. https://www.w3resource.com/c-programming-exercises/
- 5. https://www.sanfoundry.com/simple-c-programs/
- 6. https://www.includehelp.com/c-programming-examples-solved-c-programs.aspx
- 7. http://www.c4learn.com/c-programs/tag/c-programs-typical-programs

NARAYANA ENGINEERING COLLEGE::NELLORE

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING SEMESTER II

Subject	Category	tegory Course Title			ct P r we	eriods ek	Credits	Scheme of Examination Max. Marks		
Code			L	Т	Р	Total		Int. Marks	Ext. Marks	Total marks
20CH1001	BS	Chemistry	3	0	0	3	3	40	60	100
20MA1004	BS	Vector Calculus and Transforms	3	1	0	4	4	40	60	100
20ES1004	ES	Basic Electrical Engineering	3	0	0	3	3	40	60	100
20ES1007	ES	Introduction to Python Programming	2	0	0	2	2	40	60	100
20CH1501	BS	Chemistry Lab	0	0	3	3	1.5	40	60	100
20ES1509	ES	Basic Electrical Engineering Lab	0	0	2	2	1	40	60	100
20ES1504	ES	Engineering Graphics Lab	0	1	4	5	3	40	60	100
20ES1510	ES	Introduction to Python Programming Lab	0	0	2	2	1	40	60	100
20EN1502	HS	Oral Communication Skills Lab	0	0	2	2	1	40	60	100
		Counselling/Mentoring	0	0	1	1	0			
		Sports/Hobby Clubs/Activities	0	0	2	2	0			
		Activity Point Programme		Dui	ing	the Sem	ester	2	0 Points	
		Total	11	2	16	29	19.5	360	540	900

NARAYANA ENGINEERING COLLEGE::NELLORE

20CH1001		C	CHEMI	STR	Y (CO	MMO	N T() ECE,I	EEE&	CSE)				
Semester		Ho	urs / W	eek		Tota	al	Credit						
	L	,	Т		Р	hrs	5	С	(CIE	SEI	Ŧ		
Π	3		0		0	48		3	4	40	60			
Course Ou	itcom	es: Af	ter succ	cessfu	l con	npletio	n of t	he cour	se, the	e stude	ent wil	l be al	ble to:	
CO 1	Illus	istrate the molecular orbital energy level diagram of different molecular												
	spec	ecies. (BL-3)												
CO 2	Mak	e use the knowledge about various kinds of electro chemical cells in												
	engi	gineering applications. (BL-2)												
CO 3	Inte	rpret the various energy storage devices and emerging technologies in												
		-	ng appl			-				0 0		0		
CO 4							olicati	ons of d	ifferei	nt polv	mers i	n elec	tronic	-
		ces. (B								/				
CO 5			•	rious	source	s of re	newa	ble ener	gy an	d their	harne	ssing.	(BL-2)	1
CO 6	Арр	ly the	spectro	scop	y met	hods f	or the	e analys	is of e	ngine	ering r	nateri	als.	
	(BL-:	3)												
						CO-P	ОМ	apping						
СО							0						I	PSO
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO 2
	1	2	3	4	5	6	7	8	9	10	11	12	1	
CO1	3													
CO2	3	2				2	2							
CO3	3					2	2							
CO4	3					2	2							
CO5	3	2					2							
CO6	3	2				2								
					1 · I	0112 2	Madi	um 3 L	Figh					

1: Low, 2-Medium, 3- High

	COURSE CONTENT								
MODULE – 1	STRUCTURE AND BONDING MODELS	8 h							
uncertainty princ – energy level o	Planks quantum theory, photo electric effect, dual nature of matter -Debroglies equation ,Heisenberg incertainty principle, molecular orbital theory – bonding in homo- and hetero nuclear diatomic molecules - energy level diagrams of O_2 and CO, etc. π -molecular orbital's of butadiene and benzene, calculation of bond order, crystal field theory – salient features – splitting in octahedral and tetrahedral geometry.								
	Module 1, students will be able to:								
1.Under	stand the fundamental concepts of chemistry to predict the structure, properties	s and bonding							
of Engin	eering materials.(BL-1)								
2.Iillustr	ate the molecular orbital energy level diagram of different molecular species.(B	L-2)							
3.Apply	crystal field theory for octa hydral and tetra hydralmolecule.(BL-3)								
4.out lin	e the planks quantum theory(BL-2)								
5.Expla	5.Explain heisen berg uncertainty principal.(BL-2)								
MODULE -2	ELECTRO CHEMISTRY	8 h							

Electrode potential, EMF of an electrochemical cell, problems on emf Nernst equation; Electrodes concepts, reference electrodes (standard hydrogen, Calomel electrode, and glass electrode), potentiometry- potentiometric titrations (redox titrations), concept of conductivity, conductometric titrations (acid-base titrations), photovoltaic cell – working and applications. At the end of the Module 2, students will be able to: 1. Demonstrate competency in the basic concepts of electrochemical cells.(BL-2) 2. Explain the significance of electrode potentials.(BL-2) 3. List the different types of electrodes.(BL-1) 4. Differentiate between, potentiometric and conductometric titrations. (BL-2) Illustrate the construction of PV cell.(BL-2) 5. BATTERYTECHNOLOGY **MODULE-3** 7 h batteries, Important applications of batteries, Modernbatteries-Basic concepts, classification of zincair, lithiumcells- Li ion cell, Li-MnO2 cell, ni-cd cell, lead acid storage cell .FuelcellsIntroductionclassificationoffuelcells-hydrogen and oxygen fuel cell, methanol and oxygen fuel cell, SOFC - Merits of fuelcell At the end of the Module 3, students will be able to: 1. Classify batteries into different types.(BL-2) 2. Explain the concept involved in the construction of batteries.(BL-2) 3. Identify the significance of batteries. .(BL-3) 4. Compare the merits of different fuel cells.(BL-2) 5. Distinguish between different types of batteries.(BL-2) **MODULE-4** POLYMERCHEMISTRY 9h Basic concepts of polymer, chain growth and step growth polymerization, coordination polymerization, copolymerization with specific examples and mechanisms of polymer formation. Plastics - Thermoplastics and Thermosetting, Preparation, properties and applications of -pvc, Bakelite, urea-formaldehyde, Nylons-Elastomers–Buna-S, Buna-N–preparation, properties and applications. Conducting polymers – poly acetylene, poly aniline, mechanism of conduction and applications. At the end of the Module 4, students will be able to: 1 Identify different types of polymers.(BL-3) 2. Distinguish between thermoplastic and thermo setting resins.(BL-2) 3. Explain the preparation, properties and applications of some plasticmaterials.(BL-2) 4. Apply the knowledge of advanced polymers, conducting polymers for different applications.(BL-3) 5. Outline the properties of polymers and various additives added and different methods of forming.plasticmaterials.(BL-2) **MODULE-5 ENERGY SCIENCE** 7 h fuels-classification of fuels characteristics solid fuels-coal, analysis of coal, refining of petroleum, alternative and non conventional sources of Energy-solar, wind, Geo, Hydro power, Bio mass advantages and disadvantages, Nuclear energy-Nuclear fission and fusion reactions Nuclear waste disposal **MODULE-6** MODULE-VI INSTUMENTAL METHODS AND APPLICATIONS 9h Electronic Spectroscopy –EMR, Beer-Lambert's law and its, Applications, instrumentation of UVvisiblespectrophotometer. IR Spectroscopy - Types of vibrations, Instrumentation of IR spectrophotometer and its applications. Chromatography-Introduction, Principle and instrumentation of Gas Chromatography (GC) and thin layer chromatography, separation of gaseous mixtures and liquidmixtures At the end of the Module 6, students will be able to: 1. Explain the different types of spectral series in electromagnetic spectrum (BL-2) 2 .Understand the principles of different analytical instruments (BL-2) 3 .Explain the different applications of analytical instruments (BL-2) 4 .Outline the beers lamberts law.(BL-2)

			Total hours: 48hou
tent b	eyond syllabus:		
. Ba	and theory, vulcanization	on and cor	npounding of rubber
Stud	y:		
ontent	s to promote self-Lean	ning:	
S.	Торіс	CO	Reference
NO			
1	Molecular orbital	CO1	https://www.youtube.com/watch?v=FMxuss0RXOU
	theory		
2	Reference	CO2	https://www.youtube.com/watch?v=WMfXlncyMDc
	electrodes		
3	battreies	CO3	https://nptel.ac.in/courses/103/108/103108162/
4	plastics	CO4	https://www.youtube.com/watch?v=FATc12opDCA
5	Non conventional	CO5	https://swayam.gov.in/nd1_noc20_ge06/preview
5		005	https://swayani.gov.in/htt_not_not20_geo0/preview
6	energy recourses Fundamentals of	CO6	https://gwayam.gov.in/ndl_noo20_av08/nnoviaw
U		000	https://swayam.gov.in/nd1_noc20_cy08/preview
	spectroscopy		

- 1. P.C.Jain&MonikaJain, *EngineeringChemistry*, DhanpatRayPublishingCompany (P) Ltd, New Delhi, 16th edition, 2013.
- 2. K. N. Jayaveera, G. V. Subba Reddy and C. Ramachandraiah, *Engineering Chemistry*, McGraw Hill Publishers, New Delhi.
- 3. Energy scenario beyond2100,byS.Muthu Krishna Iyer.

Reference Book(s):

- 1. J. D. Lee, *Concise Inorganic Chemistry*, Oxford University Press, 5th edition2010.
- 2. Skoog and West, *Principles of Instrumental Analysis*, Thomson, 6th edition, 2007.
- 3. Peter Atkins, Julio de Paula and James Keelar, *Atkins' Physical Chemistry*, Oxford University Press, 10th edition,2010.

Online Resources Web Resources:

- 1. https://drive.google.com/file/d/0Bz82vSA0C1xlWC11WkpsTmlwQVk/view
- 2. https://www.cgaspirants.com/2017/08/engineering-chemistry-by-jain-jain.html
- 3. https://www.pdfdrive.com/concise-inorganic-chemistry-d33405948.html
- 4. https://chemistry.com.pk/books/skoog-principles-of-instrumental-analysis1/
- <u>https://www.thermalfluidscentral.org/e-books/book-</u> intro.php?b=39file:///C:/Users/DELL/Downloads/HandbookOfInstrumentalTechniquesForAnalytical ChemistryPDFDrive.com.pdf
- 3. https://nptel.ac.in/courses/104/106/104106096/
- 4. https://youtu.be/KHh_IX1G6uA
- 5. <u>https://www.youtube.com/watch?v=MfbxR9ZDs0s&feature=youtu.be</u>
- 6. .<u>https://nptel.ac.in/courses/113/105/113105028/</u>
- 7. <u>https://www.youtube.com/watch?v=15MY7abeCDk</u>
- 8. <u>https://www.youtube.com/watch?v=UeGJpwC1aiQ&feature=youtu.be</u>

	NARAYANA ENGINEERING COLLEGE: NELLORE										
20MA1004		VECTOR	CALCUL	US & TRA	ANSFORM	IS(VC&T)		R2020			
Semester	Н	lours / Wee	ek	Total	Credit		Max Marks				
	L	Т	Р	hrs	С	CIE	SEE	TOTAL			
II											
Pre-requisi		nediate M	athematic	S							
Course Obj	ectives:										
		· ·		÷	lient, diver	0					
					on and the						
		-	· •		rms and its	· ·					
					o solve the	ordinary d	ifferential	equations.			
			ots of Four								
					ms and its	A A					
Course Out			•								
CO 1	Illustrate	the physica	al interpret	ation of Gra	adient, Dive	ergence and	d Curl in va	rious			
	engineeri	ng applicat	ions.(BL-3)								
CO 2	Apply Green's, Stokes and Divergence theorem in the evaluation of double and										
	triple inte	egrals. (BL-	-3)								
CO 3	Make use	the conce	pts of Lapla	ce transfor	rm to solve	various en	gineering p	roblems. (BL-			
	3)										
CO 4	Apply the	Inverse L	aplace trar	sform te	chniques to	solve diff	erential eq	juations			
			ng field. (B		·			-			
CO 5			• ·		behavior c	f periodic	function a	nd their			
			ous fields o	•							
CO 6					• • •	arious engi	neering pro	blems. (BL-3)			

	CO-PO Mapping													
	PO												PSO	
СО	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	3											1	
CO2	3	3											1	
CO3	3	3											1	
CO4	3	3											1	
CO5	3	3											1	
CO6	3	3											1	
		•	•		1-	Low, 2-N	/ledium, 1	3- High	•	•	•	•	•	

COURSE CONTENT

MODULE – 1

VECTOR DIFFERENTIATION

9 h

Introduction to vector differentiation, Definition of Scalar and Vector point functions, Definition of Vector differential operator, Gradient of a Scalar point function- Definition of Gradient of a scalar point function and properties (without proof), Definition of Directional Derivative, Definition of level surface, Different Problems, Divergence of a Vector point function - Definition, Definition of Solenoidal vector and problems, Curl of a vector point function - Definition of Curl, definition of Irrotational vector, Problems, Laplacian operator -Definition and related problems, Vector Identities–Statements(without proof).

At the end of the Module 1, students will be able to:

1. Understand the concepts of Vector Differentiation.(BL-2)

2. Apply del to scalar and vector point functions.(BL-3)

2. Illustrate the physical interpretation of gradient divergence and over (DL 2)]						
3. Illustrate the physical interpretation of gradient, divergence and curl.(BL-2)4.Calculate directional derivatives and gradients (BL-1)							
5. Apply Vector Differentiation concepts in fluid mechanics (BL-3)							
MODULE -2 VECTOR INTEGRATION	11h						
Introduction to vector integration, Line integrals-Explanation, Work done by a For							
problems, Surface integral-Explanation and formula for surface integrals(without p	▲ :						
Volume integral- Explanation and formula for volume integral (without proof), Problems, G							
Statement (without proof), Problems, Gauss divergence Theorem- Statement (without							
Stoke's theorem - Statement (without proof), Problems.	[,						
At the end of the Module 2, students will be able to:							
1. Find the work done in moving a particle along the path over a force field (BL-1)							
2.Find the rate of fluid flow along and across curves .(BL-1)							
3. Apply Green's, Stokes and Divergence theorem in double and triple integrals.(BL-3)							
4. Use the divergence theorem in physical interpretation of the divergence of a Vector field.	(BL-3)						
5.Find the line integrals along simple closed curves on the Plane by Green's Theorem. (BL							
6.Apply Stokes' theorem in physical interpretation of the curl of a vector field. (BL-3)							
MODULE-3 LAPLACE TRANSFORMS	12h						
Introduction to Laplace Transforms, Definition of Laplace Transforms, Sufficient co	nditions for the						
existence of the L.T of a function, Laplace Transforms of standard Functions, First Tran	slation (or) First						
Shifting theorem, Problems. Second Translation (or) Second Shifting theorem, Problems.	Change of scale						
property, Problems. L.T. of derivatives, Problems. L.T. of integrals, Problems. Multiplication by 't',							
Problems. L.T. of Division by 't', Problems. Evaluation of integrals by L.T problems. L.T. of some							
special functions, Unit Step Function or Heaviside's Unit Function- Definition, L.T problem							
Function or Dirac Delta function- Definition, problems. Laplace Transform of Peri	-						
Statement (without proof), Problems.							
At the end of the Module 3, students will be able to:							
1. Understand the concepts of Laplace transforms. (BL-2)							
2. Solve Ordinary differential equations by Laplace transform techniques. (BL-3)							
3. Find integrals by using Laplace transforms. (BL-1)							
4. Understand the properties of the Heaviside (unit step) function, Dirac delta function and	its applications						
(BL-2)	no approations.						
MODULE-4 INVERSE LAPLACE TRANSFORMS	11h						
Definition of Inverse Laplace Transforms, Inverse Laplace Transforms of standard Funct							
proof), Problems. Use of Partial Fractions to find Inverse Laplace Transform- pr	oblems. First						
Translation (or) First Shifting theorem- Statement (without proof), problems. Second Tr	oblems. First anslation (or)						
Translation (or) First Shifting theorem- Statement (without proof), problems. Second Tr Second Shifting Theorem-Statement (without proof), Problems. Change of scale proper	oblems. First anslation (or) ty- Statement						
Translation (or) First Shifting theorem- Statement (without proof), problems. Second Tr Second Shifting Theorem-Statement (without proof), Problems. Change of scale proper (without proof), problems. Inverse L.T of derivatives- Statement (without proof), problems	oblems. First anslation (or) ty- Statement s. Inverse L.T						
Translation (or) First Shifting theorem- Statement (without proof), problems. Second Tr Second Shifting Theorem-Statement (without proof), Problems. Change of scale proper (without proof), problems. Inverse L.T of derivatives- Statement (without proof), problems to finite integrals-Statement (without proof), problems.	oblems. First anslation (or) ty- Statement s. Inverse L.T Multiplication						
Translation (or) First Shifting theorem- Statement (without proof), problems. Second Tr Second Shifting Theorem-Statement (without proof), Problems. Change of scale proper (without proof), problems. Inverse L.T of derivatives- Statement (without proof), problems to finite integrals-Statement (without proof), problems. In byPowersof's'Statement(withoutproof),Problems.Divisionby's'Statement(withoutproof),problems.	oblems. First anslation (or) ty- Statement s. Inverse L.T Multiplication oblems.Conv						
Translation (or) First Shifting theorem- Statement (without proof), problems. Second Tr Second Shifting Theorem-Statement (without proof), Problems. Change of scale proper (without proof), problems. Inverse L.T of derivatives- Statement (without proof), problems to finite integrals-Statement (without proof), problems. If byPowersof's'Statement(withoutproof),Problems.Divisionby's'Statement(withoutproof),pro olution-theorem-statement (without roof), problems. Applications to Ordinary Differenti	oblems. First anslation (or) ty- Statement s. Inverse L.T Multiplication oblems.Conv						
Translation (or) First Shifting theorem- Statement (without proof), problems. Second Tr Second Shifting Theorem-Statement (without proof), Problems. Change of scale proper (without proof), problems. Inverse L.T of derivatives- Statement (without proof), problems to finite integrals-Statement (without proof), problems. In byPowersof's'Statement(withoutproof), Problems.Divisionby's'Statement(withoutproof), pro- olution-theorem-statement (without roof), problems. Applications to Ordinary Differenti Working method Explanation, problems.	oblems. First anslation (or) ty- Statement s. Inverse L.T Multiplication oblems.Conv						
Translation (or) First Shifting theorem- Statement (without proof), problems. Second Tr Second Shifting Theorem-Statement (without proof), Problems. Change of scale proper (without proof), problems. Inverse L.T of derivatives- Statement (without proof), problems to finite integrals-Statement (without proof), problems. If byPowersof's'Statement(withoutproof),Problems.Divisionby's'Statement(withoutproof),pro olution-theorem-statement (without roof), problems. Applications to Ordinary Differenti Working method Explanation, problems.	oblems. First anslation (or) ty- Statement s. Inverse L.T Multiplication oblems.Conv						
Translation (or) First Shifting theorem- Statement (without proof), problems. Second Tr Second Shifting Theorem-Statement (without proof), Problems. Change of scale proper (without proof), problems. Inverse L.T of derivatives- Statement (without proof), problems to finite integrals-Statement (without proof), problems. In byPowersof's'Statement(withoutproof),Problems.Divisionby's'Statement(withoutproof),pro- olution-theorem-statement (without roof), problems. Applications to Ordinary Differenti Working method Explanation, problems. At the end of the Module 4, students will be able to: 1 Understand the concepts of inverse Laplace Transforms (BL-2)	oblems. First anslation (or) ty- Statement s. Inverse L.T Multiplication oblems.Conv						
 Translation (or) First Shifting theorem- Statement (without proof), problems. Second Tr Second Shifting Theorem-Statement (without proof), Problems. Change of scale proper (without proof), problems. Inverse L.T of derivatives- Statement (without proof), problems to finite integrals-Statement (without proof), problems. It byPowersof's'Statement(withoutproof),Problems.Divisionby's'Statement(withoutproof),problems.dution-theorem-statement (without roof), problems. Applications to Ordinary Differenti Working method Explanation, problems. At the end of the Module 4, students will be able to: 1 Understand the concepts of inverse Laplace Transforms (BL-2) 2 Develop the wave functions by inverse Laplace transforms.(BL-6) 	oblems. First anslation (or) ty- Statement s. Inverse L.T Multiplication oblems.Conv						
 Translation (or) First Shifting theorem- Statement (without proof), problems. Second Tr Second Shifting Theorem-Statement (without proof), Problems. Change of scale proper (without proof), problems. Inverse L.T of derivatives- Statement (without proof), problems to finite integrals-Statement (without proof), problems. If byPowersof's'Statement(withoutproof),Problems.Divisionby's'Statement(withoutproof),problems.dution-theorem-statement (without roof), problems. Applications to Ordinary Differenti Working method Explanation, problems. At the end of the Module 4, students will be able to: 1 Understand the concepts of inverse Laplace Transforms (BL-2) 2 Develop the wave functions by inverse Laplace transforms.(BL-6) 3 Obtain inverse Laplace transforms by Convolution Theorem (BL-3) 	oblems. First anslation (or) ty- Statement s. Inverse L.T Multiplication oblems.Conv						
 Translation (or) First Shifting theorem- Statement (without proof), problems. Second Tr Second Shifting Theorem-Statement (without proof), Problems. Change of scale proper (without proof), problems. Inverse L.T of derivatives- Statement (without proof), problems to finite integrals-Statement (without proof), problems. It byPowersof's'Statement(withoutproof),Problems.Divisionby's'Statement(withoutproof),problems.dution-theorem-statement (without roof), problems. Applications to Ordinary Differenti Working method Explanation, problems. At the end of the Module 4, students will be able to: 1 Understand the concepts of inverse Laplace Transforms (BL-2) 2 Develop the wave functions by inverse Laplace transforms.(BL-6) 	oblems. First anslation (or) ty- Statement s. Inverse L.T Multiplication oblems.Conv						
 Translation (or) First Shifting theorem- Statement (without proof), problems. Second Tr Second Shifting Theorem-Statement (without proof), Problems. Change of scale proper (without proof), problems. Inverse L.T of derivatives- Statement (without proof), problems to finite integrals-Statement (without proof), problems. It byPowersof's'Statement(withoutproof),Problems.Divisionby's'Statement(withoutproof),problems.dution-theorem-statement (without roof), problems. Applications to Ordinary Differenti Working method Explanation, problems. At the end of the Module 4, students will be able to: 1 Understand the concepts of inverse Laplace Transforms (BL-2) 2 Develop the wave functions by inverse Laplace transforms.(BL-6) 3 Obtain inverse Laplace transforms by Convolution Theorem (BL-3) 	oblems. First anslation (or) ty- Statement s. Inverse L.T Multiplication oblems.Conv						

Introduction to Fourier Series, Periodic function-definition, properties(without proof), Euler's formulae(without derivation), Dirichlet's conditions, Fourier series in $[0,2\pi]$,- formula(without derivation), Problems, Fourier series in $[-\pi, \pi]$ - formula(without derivation), Problems, Fourier series for even and odd functions in $[-\pi, \pi]$ - formula(without derivation), Problems, Fourier series in [0,21]formula(without derivation), problems, Fourier series in [-l, l]- formula(without derivation), problems, Fourier series for even and odd functions in [-1, 1]- formula(without derivation), problems Half -Range Fourier sine Series in(0, π) and (0,1)- Formula(without derivation), Problems, Half-Range Fourier cosine Series in(0, π)and(0,1)-Formula(without derivation),Problems.

At the end of the Module 5, students will be able to:

- 1. Find the Fourier series expansion of the given function. (BL-1)
- 2. Apply Fourier series and its properties in various engineering problems. (BL-3)
- 3. Find the Half-Range Fourier Sine & Cosine series in $(0, \pi)$ and (0, l). (BL-1)
- 4. Understand the properties of periodic functions, represent it as a Fourier series (BL-2)

MODULE-6	FOURIER TRANSFORMS	10h
----------	--------------------	-----

Introduction to Fourier Transforms, Fourier integral theorem Statement (without proof), Fourier sine and cosine integrals formula(without derivation), problems, Fourier Transform formula(without derivation) & Inverse Fourier Transform formula (without derivation), Properties of Fourier Transforms (without proof), problems, Fourier Sine Transform formula & Inverse Fourier sine Transform formula (without derivation), problems, Fourier Cosine Transform formula & Inverse Fourier cosine Transform formula (without derivation), problems, Finite Fourier Sine Transform- Finite Fourier Sine Transform formula &Inverse finite Fourier sine transform formula (without derivation), problems, Finite Fourier Cosine Transform- Finite Fourier Cosine Transform formula & Inverse finite Fourier cosine transform formula (without derivation), problems.

At the end of the Module 6, students will be able to:

1. Understand the concepts of Fourier transforms. .(BL-2)

2. Apply the properties of Fourier transforms to various engineering problems. (BL-3)

3. Solve boundary value problems by Fourier integral transforms.(BL-3)

5. Make use of the Fourier transforms and its inverse in practical applications of engineering. (BL-3)

Total hours:

64hours

Content beyond syllabu MARAYANA ENGINEERING COLLEGE:NELLORE

- 1. Orthogonal curvilinear co-ordinates
- 2. Cylindrical co-ordinates & Spherical polar co-ordinates
- 3. Complex Fourier series
- 4. Parseval's Identity for Fourier Transforms.
- 5. Application of Transforms to Boundary value problems.

Self-Study: Contents to promote self-Learning:

SN	Торіс	Reference
0		
1	Vector Differentiation	https://youtu.be/a19x YG0oLg
2	vector integration	https://youtu.be/pfCwRLK29h4https://youtu.be/KHiw9Vs-aLM
3	Laplace transforms	https://youtu.be/luJM137-nsohttps://youtu.be/EDVJotmT584
4	Inverse Laplace transforms	https://youtu.be/9NqdBXNyJPkhttps://youtu.be/0ZlThUd-yyw
5	Fourier series	https://youtu.be/4cSZDHxyBf4
6	Fourier transforms	https://youtu.be/GtXmS5YH7XM

Text Book(s):

- 1. B.S. Grewal, "Higher Engineering Mathematics", Khanna Publishers.
- 2. N.P. Bali and Manish Goyal, "A Text Book of Engineering Mathematics", Laxmi Publication.
- 3. Ramana B.V., "Higher Engineering Mathematics", McGraw Hill Publishers

Reference Book(s):

- 1. Erwin Kreyszig, "Advanced Engineering Mathematics", John Wiley.
- 2. Veerarajan T., "Engineering Mathematics", Tata McGraw-Hill.
- 3. Dr. M Anita, "Engineering Mathematics-I", Everest Publishing House, Pune.

Online Resources/ Web References:

- <u>http://keralatechnologicaluniversity.blogspot.in/2015/06/erwin-kreyszig-advanced-engineering</u> <u>mathematics-ktuebook-download.html</u>
- 2. <u>http://www.faadooengineers.com/threads/13449-Engineering-Maths-II-eBooks</u>.
- 3. <u>http://www.efunda.com/math/math_home/math.cfm</u>
- 4. <u>http://www.ocw.mit.edu/resources/#Mathematics</u>
- 5. <u>http://www.sosmath.com/</u>
- 6. <u>http://www.mathworld.wolfram.com/</u>

20ES1004		BAS	SIC ELECT	FRICAL E	NGINEEI	RING		R2020			
Compactor	Н	ours / We	ek	Total	Credit		rks				
Semester	L	Т	Р	hrs	С	CIE	SEE	TOTAL			
II	3	0	0	48	3	40	60	100			
Pre-requis	ite: Funda	amental o	f mathema	atics and p	ohysics						
Course Ob	jectives:										
1.	1. To understand Types of electrical elements and KCL & KVL.										
2.	To analyze	e Peak and	d RMS valu	es of AC c	ircuits.						
3.	To underst	and Bala	nced and Ur	nbalanced t	hree Phase	AC circuits	s.				
4.	4. Analyze EMF and Torque Equations of DC Machines.										
5.	To underst	and the A	pplications	of Transfo	rmers and	AC Machine	es.				
Course Ou	tcomes: A	fter succes	ssful comp	letion of the	ne course,	the student	will be abl	le to:			
CO 1	Analyze D	C and AC c	ircuits with	different s	ources and	with differ	ent reducti	on			
	technique	s. (BL-4)									
CO 2	Analyze th	ne AC circu	its or syster	ns. (BL-4)							
CO 3	Apply diffe	erent conc	epts to ana	lyze the Th	ree Phase	Circuits. (BL	-3)				
CO 4	Discuss th	e operatio	n and const	ruction of	DC machin	e. (BL-2)					
CO 5	Interpret t	he operat	ion and con	struction o	of single ph	ase and thre	ee phase tr	ansformers			
	and mach	-			- •		-				
CO 6	Illustrate t	he workin	g of single p	phase and t	hree phase	e induction	motors. (Bl	2)			

CO-PO Mapping														
CO		PO PSO												
	PO	PO										PSO	PSO	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	3	3										2	3
CO2	2	3	3										2	3
CO3	3	3	3	2									3	3
CO4	3	3	3	2									3	3
CO5	3	2	3	2										
CO6	3	3	3	2										

COURSE CONTENT											
MODULE – 1 DC CIRCUITS											
Introduction to Voltage, C	Current, Power, Direct Current (DC), Alternating Current (A	AC), Difference									
between DC and AC, Applications of DC and AC - Types of electrical elements – Ohm's Law - Electrical											
		a i i (a i									

between DC and AC, Applications of DC and AC - Types of electrical elements – Ohm's Law - Electrical circuit elements (R, L and C) – Voltage and Current sources – KCL & KVL – Analysis of simple (Series and Parallel) circuits with DC Excitation.

At the end of the Module 1, students will be able to:

- 1. Analysis of Series and Parallel circuits with DC Excitation(BL-2)
- 2. Understand the Voltage, Current, Power, Direct Current (DC), Alternating Current.(BL-2)
- 3. Explain the Electrical circuit elements (R, L and C).(BL-2)

MODULE -2 AC CIRCUITS

Representation of sinusoidal waveforms – Peak and RMS values – Phasor representation – Real Power, Reactive Power, Apparent Power, Complex Power, Power Factor – Analysis of Single phase AC circuits consisting of R, L, C, RL, RC, RLC series and parallel circuits.

7h

At the end of the Module 2, students will be able to:

- 1. Understand the Representation of sinusoidal waveforms, Peak and RMS values, Phasor representation of AC network. (BL-2)
- 2. Solve the Reactive Power, Apparent Power, Complex Power, Power Factor of a AC circuits.

(BL-3)		
	e phase AC circuits.(BL-2)	
MODULE -3	NETWORK THEOREMS	9h
Super position theorem,	Compensation theorem, Thevenin's theorem, Norton's the	orem, Maximum
power transfer theorem,	Tellegen's theorem, Millman's theorem, Reciprocity theorem	n; Application of
network theorems in solvi	ng DC and AC circuits.	
At the end of the Module	3, students will be able to:	
1. Understand t	he Application of network theorems in solving DC circuits. (BI	2-2)
	e Application of network theorems in solving AC circuits. (BL	
3. Explain vario	us theorems. (BL-2)	
MODULE -4	DC MACHINES	8h
	DC Generator - EMF Equation – Types of Generators – Magnet	
	ions – Principle of operation of DC Motor – Torque Equation	 Types of Motors
 Characteristics – Applic 		
At the end of the Module		
	s of Generators. (BL-2)	
	haracteristics and Applications of DC Machines. (BL-2)	
	the Equation and Types of Motors. (BL-3)	01
MODULE -5	TRANSFORMERS	<u>8h</u>
	Single phase Transformer – Types – EMF Equation – Applicati	
	d Unbalanced) - Principle of operation of three phase Transfor	mer – Application
At the end of the Module :	e or three phase transformer at consumer premises.	
	of Transformer. (BL-2)	
	cations of Transformer. (BL-2)	$(\mathbf{D}\mathbf{I},2)$
	ngle phase and three phase transformer at consumer premises.	(BL-2)
MODULE-6	AC MACHINES	8h
· ·	Alternator – Characteristics- applications – Principle of operation	v .
	teristics – Applications - Principle of operation of three phase I	nduction Motor –
Characteristics – Applicat		
At the end of the Module	6, students will be able to:	
	e concept of different type of AC machines. (BL-2)	
	e Characteristics and Applications of AC Machines. (BL-3)	
3. Explain the Pr	rinciple of operation of three phase Induction Motor. (BL-2)	
	Total hou	rs: 48 hours
Content beyond syllab	1161	

Content beyond syllabus:

- Introduction to PSpice.
- Starting Methods of Polyphase Induction Motors
- Brake test of DC Motor

Self-Study:

Contents to promote self-Learning:

Concents to promote sen-Learning.									
Торіс	Reference								
Introduction to the	https://nptel.ac.in/courses/117/106/117106108/								
electrical circuit									
AC circuit	https://nptel.ac.in/courses/108/105/108105053/								
DC Concretera	https://nptel.ac.in/courses/108/102/108102146/								
DC Generators	https://nptel.ac.in/courses/108/105/108105017/#								
D.C Motors	http://vidyamitra.inflibnet.ac.in/index.php/search?subject%5B								
	Topic Introduction to the electrical circuit AC circuit DC Generators								

		%5D=Electrical&course%5B%5D=Electromagnetic+Fields&
		domain%5B%5D=Engineering+and+Technology
5	Single-phase transformers	https://web.digimat.in/#electrical-engineering
6	Polyphase Induction Motors	https://nptel.ac.in/courses/108/102/108102146/
6	Polyphase induction motors	https://nptel.ac.in/courses/108/105/108105131/

1. A Sudhakar and Shyam Mohan SP, "Circuits and Networks: Analysis and Synthesis", TMH, 5th Edition, New Delhi, 2015.

2. Basic Electrical Engineering –By T.K.Nagasarkar and M.S. Sukhija Oxford University Press..

Reference Book(s):

1.S.Sivanagaraju, G.Kishor&C.Srinivasa Rao, "Electrical Circuit Analysis", Cengage Learning, 1st Edition, 2010.

2. A .Chakrabarti : Circuit Theory (Analysis and Synthesis), Dhanpat Rai &Co

3. A. E. Fitzgerald and C. Kingsley, "Electric Machinery", New York, McGraw Hill Education, 2013

4. A. E. Clayton and N. N. Hancock, "Performance and design of DC machines", CBS Publishers, 2004

5. Ravish R., Network Analysis and Synthesis, 2/e, McGraw-Hill, 2015.

Online Resources / Web Reference:

1.<u>http://175.101.102.82/moodle/</u>

2. <u>https://www.accessengineeringlibrary.com/</u>

3. https://nptel.ac.in/courses/108/105/108105066/

4.<u>https://nptel.ac.in/courses/108/105/108105159/</u>

5.<u>https://nptel.ac.in/courses/108/102/108102042/</u>

6. <u>https://nptel.ac.in/content/storage2/courses/108105053/pdf/L-21(TB)(ET)%20((EE)NPTEL).pdf</u>

7. https://www.researchgate.net/publication/329252017_Analysis_Study_In_Principles_Of_Operation_

Of Dc_Machine

8. <u>https://nptel.ac.in/courses/108/102/108102146/</u>

9. http://www.ijrimsec.com/assoc_art/volume7_1/Ch_10.pdf

10. https://www.engineering.com/

11.http://www.mathtutordvd.com/products/Engineering-Circuit-Analysis-Volume-1.cfm

12.<u>http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-002-circuits-7ndelectronics-</u> spring-2007/video-lectures/lecture-2/

13 http://www.facstaff.bucknell.edu/mastascu/elessonsHTML/Circuit/Circuit1.html

NARAYANA ENGINEERING COLLEGE:NELLORE												
20ES1007		INTRO	DUCTIO	N TO PYTH	ION PROGR	AMMING		R20				
Semester	Н	ours / Wee	k	Total hrs	Credit	Max Marks						
	L T P C CIE SE											
II	II 2 0 0 32 2 40 60 100											
Pre-requisite: Knowledge of Mathematics and Basic Programming Language												
Course Objectives:												
	learn the fu											
					l loops and fur							
					ts, tuples, sets	, dictionaries	5.					
4. To	learn the fi	iles, modul	es, packag	ges concepts.								
					n handling us	ing python.						
6. To	train in re	gular expre	ession con	cepts.								
Course Ou	itcomes: A	After succe	essful cor	npletion of t	he course, the	e student wi	ll be able to):				
CO 1	Summarize	e the funda	amental co	oncepts of py	thon program	nming. (BL - 2	2)					
CO 2	Apply the l	basic elem	ents and c	onstructs the	e python to so	olve logical p	roblems. (B	L - 3)				
CO 3	Organize d	lata using d	different d	ata structure	es of python. (BL - 3)						
CO 4	Implement	t the files r	nodules a	nd packages	in programmi	ng. (BL - 3)						
CO 5	Apply obje	ct oriented	d & except	ion handling	concepts to b	ouild simple	applications	5.				
CO 6	Implement	t the conce	pts of Reg	gular express	ions and Turtl	e Graphics.	(BL-3)					

	CO-PO Mapping														
	PO													PSO	
CO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	
CO1	3	3													
CO2	3	2	1												
CO3	3	2													
CO4	3	1	1												
CO5	3	2													
CO6	3	1		1											
					1: Lo	w, 2-M	ledium	, 3- Hi	igh						

	COURSE CONTENT	
MODULE – 1	INTRODUCTION TO PYTHON	5h
Introduction: His	tory of Python, Features of Python Programming,	Applications of
PythonProgramming.	Running Python Scripts, Comments, Typed Language, Ident	ifiers, Variables,
Keywords, Input/out	out, Indentation, Datatypes, Type Checking, range(), format(), Ma	th module.
At the end of the Mo	dule 1, students will be able to:	
1. Learn the b	asics of python. (BL - 1)	
2. Write the p	ython programs. (BL - 1)	
3. Understand	concept of type checking. (BL - 2)	
MODULE -2	OPERATORS EXPRESSIONS AND FUNCTIONS	5 h
Operators and I	Expressions: Arithmetic, Assignment, Relational, Logical, Bo	olean, Bitwise,
Membership, Identi	y, Expressions and Order of Evaluations, Control Statements.	
Functions: Introdu	ction, Defining Functions, Calling Functions, Anonymous Fu	nction, Fruitful
Functions and Void	Functions, Parameters and Arguments, Passing Arguments, Type	es of Arguments,
Scope of variables,	Recursive Functions.	

At the end of the Module 2, students will be able to:

- 1. Solve the problems using operators, conditional and looping. (BL 3)
- 2. Solve the problems using the functions. (BL -3)
- 3. Apply the principle of recursion to solve the problems. (BL-3)

MODULE-3STRINGS, LISTS, TUPLES, AND DICTIONARIES6hStrings, Lists, Tuples, and Dictionaries: Strings-Operations, Slicing, Methods, List-Operations,
slicing, Methods, Tuple- Operations, Methods, Dictionaries- Operations, Methods, Mutable Vs
Immutable, Arrays Vs Lists, Map, Reduce, Filter, Comprehensions.6h

At the end of the Module 3, students will be able to:

- 1. Write programs for manipulating the strings. (BL 1)
- 2. Understand the knowledge of data structures like Tuples, Lists, and Dictionaries.(BL 2)
- 3. Select appropriate data structure of Python for solving a problem.(BL -3)

5. Select appropri	Tate data structure of Python for solving a problem. (BL -3)							
MODULE-4	FILES, MODULES AND PACKAGES	6h						
Files, Modules and Packages: Files- Persistent, Text Files, Reading and Writing Files, Format Operator, Filename and Paths, Command Line Arguments, File methods, Modules- Creating Modules, Import Statement, Form.Import Statement, namespacing, Packages- Introduction to PIP,								
Installing Packages via		duction to PIP,						
Instannig I ackages via	At the end of the Module 4, students will be able to:							
1. Understand the	e concepts of files. (BL - 2)							
	modules and packages. (BL - 3)							
	in the form of files.(BL - 3)							
	OBJECT ORIENTED PROGRAMMING, ERRORS AND	5h						
	EXCEPTIONS							
OOP in Python: Object	ct Oriented Features, Classes, self variable, Methods, Construc	tors, Destructors,						
Inheritance, Overriding I	Methods, Data hiding, Polymorphism.							
Error and Exceptions	: Difference between an error and Exception, Handling Exce	ption, try except						
block, Raising Exception	ns.							
At the end of the Modu	le 5, students will be able to:							
1. Apply object of	prientation concepts.(BL -3)							
2. Apply the exc	eption handling concepts. (BL -3)							
3. Implement OC	DPs using Python for solving real-world problems.(BL -3)							
MODULE-6	TURTLE GRAPHICS	5h						
Turtle Graphics: Move	e and Draw, Turtle Operations, Turtle object, Simple Graphics, T	he Vagrant, The						
Beautiful Patterns, Draw	ving with Colors.							
	e 6, students will be able to:							
1. Understand the concepts of Turtle Graphics. (BL -2)								
2 Develop CLII opplications using Dethan (DL 2)								

Develop GUI applications using Python. (BL -3)

Total hours: 48Hours

Content Beyond Syllabus: Testing, GUI Programming, Matplotlib, Databases.

Self-Study:

Contents to promote self-Learning:

SNo	Module	Reference
		https://www.youtube.com/watch?v=WvhQhj4n6b8
1	Introduction to Python	https://www.youtube.com/results?search_query=History+of+Python%2 C+Features+of+Python+Programming%2C+Applications+of+Python+ Programming%2C+Running+Python+Scripts%2C+Comments+in+edur eka
		https://www.youtube.com/watch?v=9F6zAuYtuFw
		https://www.youtube.com/watch?v=yHFcNNh-SsA

		https://www.youtube.com/watch?v=FuPHs7GLxq8
		https://www.youtube.com/watch?v=6yrsX752CWk
		https://nptel.ac.in/courses/106/106/106106145/
		[Lec - 27 & 30]
		https://www.youtube.com/watch?v=0Hp7AThTZhQ
		https://www.youtube.com/watch?v=fy10ci10R_g
		https://nptel.ac.in/courses/106/106/106106145/
		[Lec - 11]
		https://nptel.ac.in/courses/106/106/106106145/
		[Lec - 5]
		https://www.youtube.com/watch?v=Pm9FOpOwhIA&t=143s
	Operators,	https://nptel.ac.in/courses/106/106/106106145/
2	Expressions and Functions	[Lec - 9]
_		https://www.youtube.com/watch?v=oSPMmeaiQ68&t=51s
		https://nptel.ac.in/courses/106/106/106106145/
		[Lec - 24]
	~ .	https://nptel.ac.in/courses/106/106/106106145/
•	Strings,	[Lec - 6]
3	Lists, Tuples, and Dictionaries	https://nptel.ac.in/courses/106/106/106106145/
	Dictionaries	[Lec - 7, 12 & 23]
	Eilan Madulan and	https://www.youtube.com/watch?v=MEPILAjPvXY
4	Files, Modules and Packages	https://nptel.ac.in/courses/106/106/106106145/ [Lec - 28]
	Object Oriented	
5	Programming, Errors	https://nptel.ac.in/courses/106/106/106106145/
	and Exceptions	[Lec - 26, 37 & 38]
		https://www.youtube.com/watch?v=WQlKPdKVXfw
6	Turtle Graphics	https://www.youtube.com/playlist?list=PLzgPDYo 3xumT2sfELR4 Y
		V3aojaxkUC9
L	1	

- 1. VamsiKurama, Python Programming: A Modern Approach, Pearson, 2017.
- 2. Allen Downey, Think Python, 2ndEdition, Green Tea Press

Reference Books :

- 1. R. Nageswara Rao, "Core Python Programming", 2nd edition, Dreamtech Press, 2019.
- 2. Allen B. Downey, "Think Python", 2ndEdition, SPD/O'Reilly, 2016.
- 3. Martin C.Brown, "The Complete Reference: Python", McGraw-Hill, 2018.
- 4. Mark Lutz, Learning Python, 5th Edition, Orielly, 2013.
- 5. Wesley J Chun, Core Python Programming, 2nd Edition, Pearson, 2007

6. Kenneth A. Lambert, Fundamentals of Python, 1st Edition, Cengage Learning, 2015

Online Resources / Web Resources:

- 1. https://www.datacamp.com/learn-python-with-anaconda/
- 2. https://www.codecademy.com/learn/paths/data-science?
- 3. https://www.coursera.org/courses?query=python
- 4. https://www.edx.org/learn/python
- 5. https://training.crbtech.in/neo/online-it-training-programme.php?
- 6. https://www.tutorialspoint.com/python/index.htm
- 7. https://www.w3schools.com/python/
- 8. https://www.javatpoint.com/python-tutorial
- 9. https://www.geeksforgeeks.org/python-programming-language/
- 10. https://www.learnpython.org/
- 11. <u>https://docs.python.org/3/</u>

NARAYANA ENGINEERING COLLEGE:NELLORE												
20CH1501	CHEMISTRY LAB (COMMON TO ECE, EEE & CSE) R2020											
Semester	H	Iours / Wee	ek	Total	Credit	Max Marks						
	L	Т	Р	hrs	С	CIE	SEE	TOTAL				
Ι	0	0	3	48	1.5	40	60	100				
Pre-requisi	Pre-requisite: Nil											
Course Ob	jectives: T	heobjectiv	eofthelabor	atorysessio	nsistoenabl	ethelearner	stogethand	8-				

onexperienceontheprinciples discussed in theory sessions and to understand the applications of these concepts inengineering.

Course Ou	Course Outcomes: After successful completion of the course, the student will be able to:							
CO 1 Demonstrate the cell constant and conductance of solutions (BL2)								
CO 2	Interpret the strength of an acid present in secondary batteries (BL2)							
CO 3	Demonstrate advanced polymer materials are used in engineering applications (BL2)							

	CO-PO Mapping													
CO		PO PSO												
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	2				2								
CO2	3	2				2								
CO3	3	2				2								
	1: Low, 2-Medium, 3- High													

COURSE CONTENT	CO
Task-1 :Conductometricititation of (i) strong acid vs. strong base, (ii) weak acid vs. strongbase	
Objective 1.perform a conductometric titration of a mixture of strong acid and weak acid with a strong base, 2. determine the equivalence point of the titration by plotting titration curve using conductance values and amount of the base added during titration, 3. state the advantages conductometric titrations,	CO2
Task-2 :Determination of cell constant and conductance of solutions	
Objective: 1. To determine conductivity of the given water sample. by using conductivity meter 2. To understand the specific conductance. Task-3- Verify Lambert-Beer'slaw Objective:1.To use spectroscopy to relate the absorbance of a colored solution to its	CO 1
concentration. 2.Toprepare a Beer's Law Plot to determine the concentration of an unknown.	CO 2
Task-4: pH metric titration of (i) strong acid vs. strong base, (ii) weak acid vs. strongbase	
 Objective: 1. To perform a potentiometric titration of an acidic solution of known molarity. 2. To graph the volume of base added vs the pH and to determine the equivalence point 3. To calculate the molarity of the basic solution 	CO 2

Т	'as	s k-5: Estim	atio	n of Ferrous	Iro	n byDicl	nrome	etry								
C)b	jective:														CO 2
1	l.	determine	the	percentage	of	ferrous	iron	in	an	unknown	sample	by	redox	titration	with	03

potassium dichromate solution.	
2. The student will pre-treat the sample to obtain the iron in the reduced(+2 oxidation) state.	
3. The student will use a solution of primary standard as the titrant	
Task-6 :Potentiometry - determination of redox potentials andemfs	
Objective:	
 Determine the concentration of an unknown iron(II) solution. By using potentiometer Discuss how the potential changes with relative concentration of oxidised/reduced from, perform a redox titration of ammonium iron (II) sulphate using potassium dichromate as oxidizing agent, determine the equivalence point of the redox titration by plotting titration curve using potential change values and amount of oxidizing agent added during titration, 	CO 3
Task-7 : Preparation of apolymer	
 Objective:To prepare phenol formaldehyde resin. (Bakelite) 1. Understand the differences between linear and cross linked polymers. 2. Compare and contrast the recycling properties of linear and cross linked polymers. 3. Compare the combustion properties of various types of material. 4. Define the following terms: polymer, monomer, repeat unit, cross linking, biopolymer Task-8: Thin layerchromatography 	CO 4
Objective:	
1. To separate spinach pigments using thin layer chromate graphy	CO 2
2. To describe the method of chromatography and its applications	
Task-9: Identification of simple organic compounds by IR	
Objective:	
 1.To learn various function groups encountered in organic chemistry 2.To learn important roll of IR spectroscopy in the study of structure of organic compounds 3.To develop skill in the recognition of characteristic absorption bands 4.to identify compound by an investigation of its IR spectrum 	CO 3
Task-10 : Determination of Strength of an acid in Pb-Acidbattery	
Objective: 1.To determine the half –reactions involved in spontaneous oxidation –reduction reactions. 2. Explain the function of the lead storage and dry cell batteries …electrolysis involving two lead strips immersed in sulfuric acid.	CO 4
Additional Experiments:	

Additional Experiments:	
Task-11 :Measurement of 10Dq by spectrophotometricmethod	
Objective	
1. The purpose of the experiment is three-fold. First, the student verifies that the spectrochemical series	
2. based on this model are generally in poor agreement with experimental values obtained from visible spectra (3). However, because of the octahedral symmetry it is true that the splitting of the d levels predicted by crystal field theory is qualitatively correct.	CO 4
Task-12 : Models of potential energysurfaces	
Objective:	
1. Distinguish between potential energies and potential energy surfaces (PESs).	
2.Identify the saddle point, the reactant and product valleys and plateaus on the contour diagram of PESs	CO4
3. Distinguish between attractive and repulsive potential energy surfaces.	
Virtual Labs:	
1. <u>http://vlab.amrita.edu/?sub=2&brch=190∼=338&cnt=1</u>	
2. http://vlab.amrita.edu/?sub=2&brch=190∼=339&cnt=1	

	3. <u>ht</u>	tp://vlab.amrita.edu/?sub=2&brch=190)∼=6	506&cnt=1	
Sel	f-Study	y:			
C	ontents	to promote self-Learning:			
	SN	Торіс	CO	Reference	
	0				
	1	Estimation of Ferrous Iron byDichrometry.	CO 1	https://www.youtube.com/watch?v=LxgZ huyNM	<u>sM</u>
	2	Paper chromatography	CO 1	https://www.youtube.com/watch?v=NsI9v MphKk	<u>/J</u>
		Preparation of polymer	CO 4	https://www.youtube.com/watch?v=PSSK GcC_0	<u>(5V</u>

1. A Textbook of Quantitative Analysis, Arthur J. Vogel.

2. Jain & Jain. Engineering Chemistry: Dhanapathrai Publications., 2015.

3.S.S.Dara, Experiments and Calculations in Engineering Chemistry: S-Chand Publications,

Revised edition,2008.

Reference Book(s):

1. S.K. Bhasin and Sudha Rani, "Laboratory Manual on EngineeringChemistry", Dhanpat Rai Publishing Company, New Delhi, 2nd edition.

2Sunitha Rattan, "Experiments in Applied Chemistry", S.K. Kataria&Sons,New Delhi, 2nd edition. **Web References:**

- 1. https://nptel.ac.in/courses/122101001/23
- 2. https://nptel.ac.in/courses/104103071/39

	Ν	NARAYAN	NA ENGIN	EERING	COLLEGI	E:NELLO	RE	
20ES1509		BASIC	ELECTR	ICAL ENG	GINEERIN	IG LAB		R2020
Semester	Н	lours / Wee	ek	Total	Credit		·ks	
	L	T P		hrs	С	CIE	SEE	TOTAL
II	0	0	2	32	1	40	60	100
Pre-requis	ite: Basic	knowledg	e of Electi	rical circuit	s and Mac	hines		
Course Ob	Course Objectives:							
1.	1. To Verification of KCL, KVL and Superposition theorem.							
2.	2. To conduct testing on DC and AC Machines.							
Course Ou	tcomes: A	fter succes	sful comp	letion of th	ne course, t	he student	will be abl	e to:
CO 1	Solve the	electrical	circuit sou	irce resista	nce, curre	nts, voltag	e and pow	er by
	applying v	arious net	work reduc	tion techni	ques.			
CO 2	Apply va	rious netv	vork theor	ems to r	educe con	nplex netv	vork into	simple
	equivalen	t network	with DC exc	itation.		-		-
CO 3								d the
			RC, RL and		•			

	CO-PO Mapping													
СО						Р	0						PS	50
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	3	2						3	2				
CO2	3	2	3						2	3				
CO3	3	3	2						2	2				
	1: Low, 2-Medium, 3- High													

COURSE CONTENT	CO
PART-A	
Task 1 - Verification of Kirchhoff laws.	
Objectives:	CO 1
a) To Verify the KCL	
b) To Verify the KVL	
Task -2 Determine Real and Reactive power for a given RLC circuits	
Objectives:	CO 1
a) To find Real and Reactive power for a given RLC circuits	
Task-3 Brake test on DC shunt motor. Determination of performance curves.	
Objectives:Plot the following characteristics	CO 3
i) Efficiency Vs Output	
ii) Line current Vs Output	
iii) Speed Vs Output	
iv) Torque Vs Output	
v) Line current Vs Torque	
Task-4 Speed Control of DC shunt motor.	
Objectives:Plot the following characteristics	CO 2
i) To Control the speed of DC Motor by Armature Control Method.	
ii) To Control the speed of DC Motor by Field Control Method.	
Task-5 O.C. & S.C. Tests on Single phase Transformer.	
Objectives: Predetermination of the following	CO 4
a) Efficiency at different load conditions and different power factors	
b) Regulation at different load conditions and different power factors	
c) Output vs. Efficiency curves	

Task 6 - Brake Test on Three Phase Induction Motor.	
Objectives: To determine the performance characteristics,	CO 3
a) Efficiency Vs Output	
b) Line current Vs Output	
c) Speed Vs Output	
d) Torque Vs Output	
Task 7 - Measurement of current in various branches and verify by calculation. Drawing	
of phasor diagram.	
Objectives: To verify the series and parallel RLC circuits	CO 1
Task 8-Magnetization characteristics of DC shunt generator. Determination of critical	
field resistance and critical speed	
Objectives:	CO 3
a) Predetermine the OCC at different speeds	
b) Determine the critical field resistance	
c) Obtain critical speed for a given shunt field resistance	
Task 9-Swinburne's test on Dc machine	
Objectives: To determine the Efficiency of DC motor and Generator	CO 3
Task 10 -Load test on DC shunt generator. Determination of characteristics.	
Objectives:	CO 3
a) Determine the external & internal characteristics	
b) Deduce the armature reaction curve	
Task 11 - Simulation of DC Circuits	
Objectives: To simulate a simple DC circuits using PSpice	CO 2
Task 12 -Mesh and Nodal Analysis	
Objectives: To simulate a simple DC circuits using PSpice	CO 2
Virtual Labs:	

- 1. Speed Control of DC Motor By Varying The Armature And Field Resistances.
- 2. Conduct OC and SC Test on Single Phase Transformer.
- 3. Conduct Brake test on 3-phase induction motor.

Self-Study:

Contents to promote self-Learning:

SN	Торіс	СО	Reference
0			
1	Kirchoff's Laws &	CO1	https://www.youtube.com/watch?v=S-bbn0ZQ7is
	Superposition		
	theorem.		
2	simple DC circuits	CO2	https://www.csun.edu/~skatz/pspice_tutorials/pspice_tutor
	using Pspice		ial_1.pdf
3	The performance	CO3	https://www.youtube.com/watch?v=kOj8dA9cKXo
	characteristics of DC		
	motors.		
4	The performance	CO4	https://www.youtube.com/watch?v=CaSdKCwlSLE
	characteristics of AC		
	motors.		

Basic Electrical and Electronics Engineering, M.S.Sukhija, T.K.Nagsarkar, Oxford University.
 Basic Electrical and Electronics Engineering, S.K Bhattacharya, Pearson Education, 2012

Web Resources:

- 1. <u>https://nptel.ac.in/content/storage2/courses/108105053/pdf/L-41(TB)(ET)%20((EE)NPTEL).pdf</u>
- 2. <u>https://nptel.ac.in/courses/108/102/108102146/</u>

NARAYANA ENGINEERING COLLEGE:NELLORE											
20ES1504	ENGINEERING GRAPHICS LAB										
Semester	Hours / Week			Total	Credits	Max Mark	ks				
	L	Т	Р	hrs	С	CIE	TOTAL				
Ι	0	1	4	80	3	40	60	100			
Pre-Requisite: Basic Mathematics (Geometry)											
Course Objectives:											
1. To impart skills on using drawing instruments											
2. To convey exact and complete information of any physical object.											
3. To Construct Engineering Curves.											
4. To Learn and practice basic Auto CAD commands.											
5. To Instruct the utility of drafting & modelling packages in orthographic and isometric drawings											
6. To understand the applications of AUTOCAD for modeling physical objects											
Course Outcomes : At the end of the course, student will be able to:											
CO1 Develop the orthographic projection of points and straight lines(BL-3)											
	Construct the planes and simple solids.(BL-3).										
	Understand and practice basic AUTOCAD commands (BL-2)										
	Construct Isometric views using AUTOCAD (BL-3).										

	CO-PO Mapping													
СО	РО										PSO			
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	P	РО	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	0	12	1	2
											11			
C01	2	2			1							2		
CO2	2	2			2	1						2		
CO3	1	1	1		1							1		
CO4	2	2	2		2							1		
	1:Low,2-Medium,3-High													

	COURSE CONTENT	
	Part-A Manual Drawing	
TASK-1	Introduction and Conic sections	10h
Introduction to Engine	ering graphics:	i
Principles of Engineerin	g Graphics and their significance; various instruments used, dra	wing sheet
	ering, BIS conventions, types of lines and dimensioning methods.	C
	ns: simple constructions, construction of Pentagon, Hexagon by ge	eneral
method only.	r	
	Types of conics: Ellipse, Parabola and Hyperbola (Eccentricity me	thod only),
Attheendofthe TASK- 1,s	tudentswillbeableto:	
	Geometrical Constructions.(BL-2)	
	ctions by using eccentricity method.(BL-3)	
TASK2	Orthographic Projections	11h
Objectives and Principl		
	Comparison between first angle and third angle projection.	
	rojection of points placed in different quadrants,	1. I.
	ines: Fundamental concepts, Line parallel, perpendicular and ir	iclined to one
1	placed in first quadrant only,	
• •	Projection of planes (Triangle, Square, Pentagon, Circle) parallel,	
	ed to one and two reference planes placed in first quadrant only	
At the end of the TASK -		
	hographic Projection of points.(BL-2)	
e e	n of lines inclined to one and two reference planes.(BL-3) jectionofplanesinclinedtooneandtworeferenceplanes.(BL-3)	
TASK-3	Projections of Solids	13 h
	hedra, Solids of revolution,	15 11
Projections of regu		vith itsaxis
• •	ne and parallel to other plane, Axis inclined to one plane and pa	
plane.	ne una paraner to onier plane, i filo mennea to one plane and p	
At the end of the TASK -3	3,studentswillbeableto:	
1. Understand Proj	jections of regular Solids.(BL-2)	
2. Draw projection	s of Prisms, Pyramids, Cylinders And Cones(BL-3)	
TASK-4	Isometric and Orthographic views	11h
Isometric Projections :	Principles, Isometric scale, Isometric views, Conventions, Isome	tric views of
lines, planes, simple sol	ids (Cube, Cylinder, Cone), Conversion of Isometric views to G	Orthographic
views.		
At the end of the TASK -4	4,studentswillbeableto:	
1.UnderstandPrinciplesof	fIsometricProjectionsandIsometricscale(BL-	
2)2.Drawisometricviews	sofsimplesolids(BL-2)	
3.ApplytheprinciplesinC	onversionofIsometricviewsintoOrthographicviews.(BL-3)	
	Part B Computer Aided Drafting	
TASK-5	Introduction to AutoCAD	16 h
Basic drawing and editin	g commands: line, circle, rectangle, erase, view, undo, redo, snap	, object editing,
moving, copying, rotat	ting, scaling, mirroring, layers, templates, polylines, trimmi	ng, extending,
stretching, fillets, arrays,	dimensions. Dimensioning principles and conventional represent	ations.
At the end of the TASK-	- 5, students will be able to:	
1. Understand the E	Basic Auto CAD commands.(BL-2)	
2. Draw the templa	ates of simple physical objects.(BL-3)	
3. Applytheutilityot	fdrafting&modellingpackagesinorthographicandisometricdrawing	jS

TAS	K-6 Orthographic and Isometric Projections	19	h
Transforr	mation of Isometric Projections into orthographic projections such	as simple sol	ids such as
cylinder, c	cone, square prism, pentagonal pyramid		
Draw 3D i	model of mechanical components such as Stepped block, Bush bearing	5,	
Attheendo	ofthe TASK -6, students will be able to:		
1. De	eveloptheusageof2Dand 3Dmodelling.(BL-3)		
2. Cr	reate the various views of machines components.(BL-3)		
		Total H:	80 hours
	beyond syllabus:		
	omentofsurfaces, Section of solids		
Text Boo			
	hatt N.D. "Elementary Engineering Drawing", CharotarPublishers,2	2014.	
2. Sha	ah and Rana, Engineering Drawing, 2/e, Pearson Education,2009		
3.	K.L.Narayana&P.Kannaiah,EngineeringDrawing,3/e,ScitechPublishers	s,Chenna	
i	i, 2012.		
4.]	Engineering Drawing by Dr AVS Sridhar Kumar, Dr Krishnaiah, T P	Vara Prasad.	
,	Spectrum education, Sun techno Publications, 2019		
Reference	ce Book(s):		
	Engineering Drawing and Graphic Technology -International Edition, 7 J. Vierck, Robert J. Foster, McGraw-Hill, 2014	Thomas E.Fre	nch, Charles
	/enugopal.K "Engineering Drawing and Graphics", New Age Internation 1010.	onal (P) Ltd.,	New Delhi,
	Resources:		
	vww.nptel.ac.in/courses/112104019/		
	vww.nptel.ac.in/courses/105104148/		
	vww.vlab.co.in		
	Resources: https://mrcet.com/downloads/hs/Engineering%20Graphics%20Manual	1%20final ndf	
1.			ing Graphics
1.	*	uary/Engineer	ing_oraphics_
2	<u>.Sec_2020-21.pdf</u> http://cbseacademic.nic.in/web_material/Curriculum19/Main-/11_En	sin sonin s. C.u	uhing udf
2.	nup://coseacademic.nic.in/web_material/Curriculum19/Main-/11_En	igineering_Gra	ipnics.pdi

	NARAYANA ENGINEERING COLLEGE:NELLORE									
20ES1510 INTRODUCTION TO PYTHON PROGRAMMING LAB R20										
Semester	Hours / Week Total Credit Max Marks									
	L	Т	Р	hrs	С	CIE	SEE	TOTAL		
II 0 0 2 32 1 40 60 100										
D .	•/ D		1 1							

Pre-requisite: Programming Knowledge

Course Objectives:

1. To gain knowledge on python programs basics

2. To prepare students for solving the programs on functions, data structures, Files

3. To prepare students for solving the programs on Classes, Exception Handiling, Regular Expressions and Multi threading

Course Ou	Course Outcomes: After successful completion of the course, the student will be able to:								
CO1	CO1 Understanding and use of python- Basic Concepts (BL -2)								
CO2	Solve the concepts of python functions and data structures (BL -3)								
CO3	Understand the concepts of files, modules, multithreading and regular								

	CO-PO Mapping													
CO		PO PSO												
	PO	PO	PO	PO	PO	PO	PO	РО	PO	PO	PO	PO	PSO	PSO
	1	1 2 3 4 5 6 7 8 9 10 11 12									1	2		
CO1	2	2	3											
CO2	2	2	3											
CO3	2	2 2 3 3												
					1-L ov	x 2 M	edium	3- Hi	σh					

1-Low, 2-Medium, 3- High

COURSE CONTENT	CO
Task-1 - Python Basics	
1. Running instructions in Interactive interpreter and a Python Script	CO 1
2. Write a program to purposefully raise Indentation Error and Correct it	
3. Write a program to compute distance between two points taking input from the user (Pythagorean Theorem)	
4. Write a program to convert a Binary number to Decimal number and verify if it is a Perfect	
number.	
Task-2 - Conditional Statements	
1. Write a program to determine if a given string is a Palindrome or not	CO 1
2. Write a program for Fibonacci sequence is generated by adding the previous two terms by	
starting with 1 and 2, the first 10 terms will be: 1, 2, 3, 5, 8, 13, 21, 34, 55, 89,	
Task-3 - Functions	
1. Write a function ball_collide that takes two balls as parameters and computes if they are	CO 2
colliding. Your function should return a Boolean representing whether or not the balls are	
colliding.	
Hint: Represent a ball on a plane as a tuple of (x, y, r), r being the radius. If (distance between	
two balls centers) <= (sum of their radii) then (they are colliding)	
TASK-4 - Functions Continued	
1. Write a function that draws a Pyramid with # symbols	CO 2
#	
<i>" " " " " " " " " "</i>	
# # # #	
# # # # # #	

2. Choose any five built-in string functions of C language. Implement them on your own in	
Python. You should not use string related Python built-in functions.	
FASK-5 - Strings	
1. Write a program to use split and join methods in the string and trace a birthday with	CO 2
Diction b array data structure.	00-
2. Write a program using map, filter and reduce functions	
TASK-6 - Lists	
1. Write program which performs the following operations on list's. Don't use built-in	CO 2
functions	
a) Updating elements of a list	
b) Concatenation of list's	
c) Check for member in the list	
d) Insert into the list	
e) Sum the elements of the list	
f) Push and pop element of list	
g) Sorting of list	
h) Finding biggest and smallest elements in the list	
i) Finding common elements in the list	
FASK-7 - Files (
1. Write a program to print each line of a file and count the number of characters,	CO 3
words and lines in a file.	
2. Write a program that allows you to replace words, insert words and delete words from the file.	
FASK-8 - Modules and Packages	
1. Write a program for creating a module and import a module	CO 3
 Write a program for creating a module and import a module Write a program to perform any two operations using Numpy 	05
FASK-9-Class and Objects	
1. Write a program for Class variables and instance variable and illustration of the self	CO 4
variable	CO 4
i) Robot	
ii) ATM Machine	
FASK-10 - Exception Handiling	
1. Write a program of exception handling to open a file while do not have write	CO 4
permissions	001
2. Write a Program o handle multiple errors with one except statement.	
rASK-11- Regular Expressions	
1. Write a Python program to remove the parenthesis area in a string.	CO 3
Sample data : ["example (.com)", "w3resource", "github (.com)", "stackoverflow	
(.com)"]	
2. Write a program to match the name phone, emails, passwords and phone numbers	
using pattern matching	
rASK-12-Turtle	
	<u> </u>
1. Write a turtle program to produce a flower in different colours	CO 3
2. Write a turtle program to produce a flower in different colours	

Additional Experiments TASK-1 1. Write a python program to find the resolution of an image 2. Write a python program to count the number of vowels and consonants

3. Write a python program to print the ASCII value of acharacter

NARAYANA ENGINEERING COLLEGE: NELLORE

Virtual	Labs:								
Pytho	Python Lab (IIT Bombay) : http://vlabs.iitb.ac.in/vlabs-dev/labs/python-basics/experimentlist.html								
	List of Ex	perime	nts						
1.	Arithmetic Operations	6.	Classes and Objects						
2.	Built-in Functions	7.	Built-in Modules						
3.	Loops	8.	Constructors and Inheritance						
4.	Data Types	9.	File Operators						
5.	Strings								

Text Book(s):

- 1. VamsiKurama, Python Programming: A Modern Approach, Pearson, 2017.
- 2. Allen Downey, Think Python, 2ndEdition, Green Tea Press

Reference Books :

- 1. R. Nageswara Rao, "Core Python Programming", 2nd edition, Dreamtech Press, 2019.
- 2. Allen B. Downey, "Think Python", 2ndEdition, SPD/O'Reilly, 2016.
- 3. Martin C.Brown, "The Complete Reference: Python", McGraw-Hill, 2018.
- 4. Mark Lutz, Learning Python, 5th Edition, Orielly, 2013.
- 5. Wesley J Chun, Core Python Programming, 2nd Edition, Pearson, 2007
- 6. Kenneth A. Lambert, Fundamentals of Python, 1st Edition, Cengage Learning, 2015

Web References:

- 1. https://www.tutorialspoint.com/python/index.htm
- 2. https://www.w3schools.com/python/
- 3. https://www.javatpoint.com/python-tutorial
- 4. https://www.geeksforgeeks.org/python-programming-language/

20EN1502		ORAL COMMUNICATION SKILLS LAB									
Semester	H	Hours / Week Total Credit Max Marks									
	L	Т	Р	hrs	C CIE SEE TOTA						
II	0	0	2	32	1	40	60	100			

Task - 1: Introducing to others

Situational Dialogues, Ice - Breaking Activity, Introducing Oneself and Others – Greetings – Taking Leave, Think pair share, Oral Description of Pictures, Photographs, Products, and Process

Task – 2: Debate

What is Debate, How to Debate, Tips for Debate, Debate Practice, Explanation of Debate Techniques, Debate Videos Presentation

Task – 3: Group Discussion

What is Group Discussion, Types of Group Discussion, Tips and Techniques for Effective Group Discussion, Group Discussion Videos Presentation.

Task – 4: Professional Skills

Telephone Etiquette, Making an Appointment, Telephone Talk and Tips, Effective E-mail Resume Writing, Resume Cover Letter, Curriculum Vitae Preparation

Task – 5: Presentation Skills

Oral presentations (individual and group) through Seminars / PPTs, Importance of Body Language, Paper Presentation, Public Speaking Tips, Effective Presentation of renowned speakers.

Task – 6: Interview Skills

Interview Skills Introduction, Interview strategies, Interview questions, Successful Interview presentations and Mock Interviews.

Reference Books:

- 1. Rizvi, Ashraf. M., Effective Technical Communication, Mc Graw Hill, New Delhi. 2005
- 2. Raman, Meenakshi& Sangeetha Sharma. Technical Communication: Principles and Practice, Oxford University Press, New Delhi. 2011.
- 3. Chase, Becky Tarver. Pathways: Listening, Speaking and Critical Thinking. Heinley ELT; 2nd Edition, 2018.
- 4. English for Technical Communication for Engineering Students, Aysha Vishwamohan, Tata McGraw-Hill 2009
- 5. Communication Skills by Leena Sen, PHI Learning Pvt Ltd., New Delhi, 2009

20MA1005			MPLEX ANA			E: NELLO		R-20				
Semester	H	lours / We		Total	Credit		Max Marks	11 20				
	L	T	P	hrs	C	CIE SEE TOTA						
Ι	3 0 0 48 3 40 60 10											
Pre-requisi	te: inter i	nathemati	cs									
 Spering Condition Condition Varian To in To in 	cial function nplex Variations nume interpolation evaluation solve ordin	ons and ables Dif rical meth ng the val of integra nary differ	ferentiation nods for so ues throug al values th ential equa	h & Integr lving an al h the poly prough the ations thro	ation. gebraic and nomials, numerical ough the nu	l transcende methods imerical m						
CO 1			^				problems . (B	L-3)				
CO 2	Identify t functions	•	icity of com	plex funct	ions to fin	d the deriv	atives of com	plex				
	Apply Ca	ichy's inte	gral formul	a and Caus								
CO 3		-	cours. (BL-3)		hy's integra	al theorem t	o evaluate im	proper				
CO 3	integrals Solve the	along cont Algebraic	cours. (BL-3)) ental Equa	itions by us		al methods &					

	CO-PO Mapping														
	РО													PSO	
СО	PO1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	
CO1	3	3													
CO2	3	3											1		
CO3	3	3											1		
CO4	3	3													
CO5	3	3											1		
					1-	Low, 2-	Medium,	3- High							

COURSE CONTENT									
MODULE – 1 Special Functions Hours:10									
(with proof), O	pecial functions, Beta function- Definition of beta function ther forms of Beta function (with proof), Gamma function and its properties (with proof), Relation between Beta and (on- Definition of							

At the end of the Module 1, students will be able to:

- 1. Understand Beta and Gamma functions and its relations. (L-3)
- (L-2) 2. Explain the applications and the usefulness of these special functions.
- (L-1) 3. Use Beta & Gamma functions to evaluate different types of integral problems (L-3)
- 4. Apply the techniques of special functions in various engineering problems.

MODULE -2	Complex variables – Differentiation	Hours:10	
Introduction to fur	actions of complex variable-concept of Limit & continuity	- Differentiation,	
Cauchy-Riemann	equations, analytic functions, harmonic functions, f	inding harmonic	
conjugate-construc	tion of analytic function by Milne -Thomson method.		
At the end of the Mod	ule 2, students will be able to:		
1. Understand fu	nctions of Complex variable and its properties.	(L-3)	
2. Evaluate deriv	vatives of complex functions.	(L-5)	
3. Understand th	e analyticity of complex functions.	(L-3)	
MODULE-3	Complex Variables – Integration	Hours:8	
Line integral-Con	tour integration, Cauchy's integral theorem (without	proof), Cauchy's	
Integral formula (without proof), zeros of analytic functions, singularities,	Laurent's series;	
•	Residue theorem (without proof), Evaluation of definite i		
sine and cosine, E	valuation of certain improper integrals (around unit circle	, semi-circle with	
At the end of the Mod	ule 3, students will be able to:		
1. Understand th	e integration of complex functions.	(L-3)	
2. Apply Cauchy	y's integral theorem and Cauchy's integral formula.	(L-3)	
3. Understand si	ngularities of complex functions.	(L-3)	
4. Evaluate impr	oper integrals of complex functions using Residue theorem.	(L-5)	
MODULE-4	Solution of Algebraic, Transcendental Equations &	Hours:10	
	Interpolation		
Introduction-Bisec	tion method, Regula-falsi method, Newton Raphson	method, Finite	
	n's forward and backward interpolation formulae – Lagrang		
	ule 4, students will be able to: braic or transcendental equation using an appropriate numerical n	nethod. (L-3)	
-	e use of different operators in interpolation.	(L-3) (L-2)	
	ting polynomials using Newton's forward and backward formula		
·	e theoretical and practical aspects of the use of numerical method		
4. Onderstand in	e theoretical and practical aspects of the use of numerical method	us. (L-2)	
MODULE-5	Numerical integration & Solution of ordinary differential equations	Hours:10	
solution of Ordina	ion: Trapezoidal rule – Simpson's 1/3 Rule – Simpson's 3/ ary Differential equations: Solution by Taylor's series-Pie imations-Modified Euler's Method- Runge-Kutta Method.		

At the end of the Module 5, students will be able to:

- 1. Apply numerical differentiation and integration techniques to various engineering problems. (L-3)
- 2. Understand the techniques of Trapezoidal rule, Simpson's 1/3 Rule, Simpson's 3/8 Rule and its applications (L-2)
- 3. Work out numerical differentiation whenever and wherever routine methods are not
- 4. Apply Runge-kutta method in engineering problems

Fotal hours	
-------------	--

(L-1)

(L-3)

48

Content beyond syllabus:

- 1. Central difference interpolation.
- 2. Iteration Methods.

Self-Study:

Contents to promote self-Learning:

SNO	Торіс	CO	Reference
1	Special Functions	CO1	https://youtu.be/Zp05KlxaRcY
2	Complex Variables	CO2	https://youtu.be/t9xW7UaZwZ0
	Differentiation		https://youtu.be/59u4PnalRCc
3	Complex Variables integration	CO3	https://youtu.be/OQQqbV32b78
4	Solution of Algebraic and	CO4	https://www.youtube.com/watch?v=apuEX
	Transcendental Equations		<u>UAntJo</u>
5	Numerical Differentiation &	CO5	https://www.youtube.com/watch?v=0rtaU
	Integration		<u>UonwkU</u>
6	Numerical solution of	CO6	https://www.youtube.com/watch?v=QugqS
	Ordinary differential equations		<u>a3Gl-w</u>

Text Book(s):

- 1. B.S. Grewal, "Higher Engineering Mathematics", 44th edition ,Khanna Publishers,2017.
- 2. 2 Ramana B.V., "Higher Engineering Mathematics", McGraw Hill Publishers, 2017..
- 3. 3. S.S. SASTRY, Introductory Methods of Numerical Analysis, 5/e, PHI learning private limited, 2012.

Reference Book(s):

- 1. Erwin Kreyszig, "Advanced Engineering Mathematics", John Wiley.
- 2. Veerarajan T., "Engineering Mathematics", Tata McGraw-Hill.
- 3. Michael Greenberg, Advanced Engineering Mathematics, 2/e, Pearson, 2018
- 4. R.K.Jain and S.R.K.Iyengar, Advanced Engineering Mathematics, 3/e, Alpha Science International Ltd., 2002.

Online Resources/ Web References:

- 1. <u>http://www.faadooengineers.com/threads/13449-Engineering-Maths-II-eBooks.</u>
- 2. <u>http://www.math.ust.hk/~machas/numerical-methods.pdf</u>
- 3. <u>http://www.efunda.com/math/math_home/math.cfm</u>
- 4. <u>http://www.ocw.mit.edu/resources/#Mathematics</u>
- 5. <u>http://www.sosmath.com</u>
- 6. <u>http://www.mathworld.wolfram.com</u>
- 7. https://global.oup.com/uk/orc/biosciences/maths/reed/01student/numerical_tutorials

	NARAYANA ENGINEERING COLLEGE:NELLORE										
20ES1010			DATA	STRUC	STRUCTURES						
Semester	Н	lours / Wee	k	Total	Credit		Max Mar	·ks			
	L	Т	Р	hrs	С	CIE	SEE	TOTAL			
III	2	0	2	32	3	40	60	100			
Pre-requis	site: Knowledge of Mathematics, Computer Programming, Analytical & Logical Skills										
Course Ob	Course Objectives:										
					r an easy ac						
2. To dest	ign and imp	lementatio	n of variou	s basic and	advanced of	lata structu	res.				
3. To intr	oduce vario	ous techniq	ues for repr	resentation	of the data	in the real v	world.				
4. To dev	elop applic	ations usin	g data struc	tures.							
5. To pert	tain knowle	dge on imp	broving the	efficiency	of algorithn	n by using s	suitable dat	a structure.			
Course Ou	tcomes: A	fter succes	sful compl	etion of th	e course, th	ne student	will be able	e to:			
CO 1	A										
CO 2	Demonstrate the concepts of stacks and queues for organizing data. (BL-3).										
CO 3 Demonstrate the concepts of Linked Lists in Linear Data Structures. (BL-3).											
CO 4	Interpret different ways of handling Trees and Graphs as non-linear Data Structures (BL-										
	3).										
CO 5	Analyze d	ifferent sea	arching and	sorting tee	chniques fo	r organizin	g data (BL-4	·).			

	CO-PO Mapping													
	PO												PS	50
СО	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO 1	3	2	2										2	
CO 2	1	3	3										2	
CO 3	1	3	3	1									1	
CO 4	1	3	2	1									1	
CO 5	2	3	3	1									2	
					1: Lov	w, 2-M	ledium	, 3- Hi	gh					

COURSE	CONTENT
--------	---------

MODULE – 1	Introduction to Data Structures	6H					
Introduction: Overview of Data Structures, Implementation of Data Structures, Algorithm Specifications, Analysis of an Algorithm, Asymptotic Notations, Time-Space trade off. Arrays: One-Dimensional, Multi-Dimensional, Pointer Arrays.							
At the end of the M	odule 1, students will be able to:						
1. Understand	the linear and non-linear data structures. (BL - 2)						
2. Understand the time and space complexities of an algorithm. (BL - 2)							
3. Illustrate representation of data using Arrays. (BL - 2)							
MODULE -2	MODULE -2 Stacks and Queues						

Stacks: Introduction, Representation of a Stack, Stack Operations, Applications of Stacks. **Queues:** Introduction, Representation of a Queue, Queue Operations, Circular Queue, Applications of Queues.

At the end of the Module 2, students will be able to:

- 1. Explain stack ADT and its operations. (BL 2)
- 2. Understand the expression evaluation using stacks. (BL 2)
- 3. Implement various queue structures. (BL 3)

Linked Lists

6H

6H

Introduction, Singly linked lists, Doubly Linked Lists, Circular Linked Lists, Linked Stacks and Queues, Applications of Linked Lists.

At the end of the Module 3, students will be able to:

- 1. Understand basics concepts of linked lists. (BL 2)
- 2. Illustrate various structures of linked lists. (BL 2)
- 3. Understand the concept of dynamic memory management. (BL 2)

MODULE-4

MODULE-3

Trees & Graphs

Trees:Introduction, Basic Terminologies, Definition and Concepts, Representation of Binary Tree, Operations on a BinaryTree, Binary SearchTree, Height BalancedBinaryTree.

Graphs: Introduction, Graph Terminologies, Representation of Graphs, Graph Operations, Shortest Paths – Warshall's, Floyd's and Dijkstra's algorithms, Topological Sorting.

At the end of the Module 4, students will be able to:

- 1. Understand the concept of trees. (BL 2)
- 2. Compare different tree structures. (BL 2)
- 3. Explain the importance of Graphs for solving problems. (BL 2)
- 4. Understand graph traversal methods. (BL 2)
- 5. Implement algorithms to identify shortest path. (BL 3)

Sorting: Introduction, Bubble Sort, Selection Sort, Quick Sort.

Searching: Introduction, Basic Terminology, Linear Search and Binary Search Techniques **Hash Table:**Hashing Techniques, Collision Resolution Techniques, Closed Hashing, Open Hashing.

At the end of the Module 6, students will be able to:

- 1. Implement the sorting algorithms (BL 3)
- 2. Select the appropriate sorting algorithm for a given application (BL 3)
- 3. Understand the concept of Hash Table (BL 2)
- 4. Explain searching techniques. (BL 2)

Total hours: 32 hours

5. *52* nou

Conten	Content beyond syllabus:								
1.	1. Heap Sort, Insertion Sort, Merge Sort								
2.	2. Optimum Sorting Algorithms								
Self-St	Self-Study:								
Conte	Contents to promote self-Learning:								
SNO	Module Reference								
1	Introduction to Data Structures	https://www.youtube.com/watch?v=coxWfcz_sIk&list=PLrjkTql3jnm8iki QIeIHrMYCaBfkBkfYR&index=1 https://www.youtube.com/watch?v=qt6gnsxevZ0&list=PLrjkTql3jnm8iki QIeIHrMYCaBfkBkfYR&index=5							

		https://www.youtube.com/watch?v=NIWEdScxU9k&list=PLrjkTql3jnm8 ikiQIeIHrMYCaBfkBkfYR&index=7
2	Stacks and Queues	https://www.youtube.com/watch?v=o- B4qNnwujY&list=PLrjkTql3jnm8ikiQIeIHrMYCaBfkBkfYR&index=10 https://www.youtube.com/watch?v=UK8WaQYdcMo&list=PLrjkTql3jn m8ikiQIeIHrMYCaBfkBkfYR&index=12
3	Linked List	https://www.youtube.com/watch?v=hGxtTPPpqQs&list=PLrjkTql3jnm8i kiQIeIHrMYCaBfkBkfYR&index=22
4	Trees& Graphs	https://www.youtube.com/watch?v=e14hpagIr3U&list=PLrjkTql3jnm8iki QIeIHrMYCaBfkBkfYR&index=26 https://www.youtube.com/watch?v=ZAU5IICQBIs&list=PLrjkTql3jnm8i kiQIeIHrMYCaBfkBkfYR&index=46
5	Sorting and Hash Tables	https://www.youtube.com/watch?v=TnU8COKcZs&list=PLrjkTql3jnm8i kiQIeIHrMYCaBfkBkfYR&index=52

Text Book(s):

- 1. D. Samanta, "Classic Data Structures", 2nd Edition, Prentice-Hall of India, Pvt. Ltd., India, 2012.
- 2. Ellis Horowitz and Sartaj Sahni, "Fundamentals of Data Structures in C", 2nd Edition,
- Universities Press, 2008.

Reference Books:

- 1. NarasimhaKarumanchi, Data Structures and Algorithms Made Easy, Careermonk Publications, 2016
- 2. Peter Bras, "Advanced Data Structures", Cambridge University Press, 2014.
- 3. RS Salaria, Data Structures, 3rd Edition, Khanna Publishing House, 2017.
- 4. YashwantKanetkar, Data Structures through C,3rd Edition, BPB Publications, 2019.
- 5. RB Patel, Expert Data Structures with C, Khanna Publications, 2019.
- 6. Richard F. Gilberg, Behrouz A. Forouzan, Data Structures A Pseudo code Approach with C, Second Edition, Cengage Learning.
- 7. Ananda Rao Akepogu, Radhika Raju Palagiri, Data Structures and Algorithms Using C++,

Online Resources / Web Resources:

- 1. <u>https://nptel.ac.in/courses/106/102/106102064/</u>
- 2. https://swayam.gov.in/nd2_cec19_cs04/preview
- 3. https://www.youtube.com/watch?v=0IAPZzGSbME&list=PLDN4rrl48XKpZkf03iYFl-O29szjTrs_O
- 4. https://www.youtube.com/watch?v=AT14lCXuMKI&list=PLdo5W4Nhv31bbKJzrsKfMpo_grxuLl8LU
- 5. <u>https://www.youtube.com/watch?v=Db9ZYbJONHc&list=PLVIQHNRLflP_OxF1QJoGBwH_TnZszHR_i</u>
- 6. https://www.youtube.com/watch?v=92S4zgXN17o&list=PL2_aWCzGMAwI3W_JlcBbtYTwiQSsOTa6P
- 7. https://www.youtube.com/playlist?list=PLrqxgoIHbaCQPHa2LnGX0f-dCIH2MWIFS
- 8. <u>https://www.youtube.com/playlist?list=PLrjkTql3jnm8ikiQIeIHrMYCaBfkBkfYR</u>
- 9. <u>https://www.tutorialspoint.com/data_structures_algorithms/data_structures_basics.htm_https://www.hackerrank.com/domains/data-structures_https://www.cs.usfca.edu/~galles/visualization/Algorithms.html</u>
- 10.https://discuss.codechef.com/t/data-structures-and-algorithms/6599
- 11. Algorithms Notes for Professionals book :https://books.goalkicker.com/AlgorithmsBook/

		NAI	RAYA	NA F	NGI	IEER	ING	COLI	LEGI	E:NEL	LOR	E		
20ES1012		- 11						AND					R20	
Semester		Но	Hours / Week			T	otal	Cred	it		Μ	ax Ma	urks	
	L		Т		Р	h	nrs	C		CIE		SEE	TO	TAL
III	3	5	0		0	4	48	3		40		60	1	00
Pre-requisite: Semiconductor Physics.														
Course O	bject	ives:												
1.	1. To study the operation and characteristics of PN junction diode and special													
	semi	condu	ictor d	evices	5									
2.					-		•			vith fil				
3.	To d	escrib	e the	charac	teristi	cs of l	BJT a	nd its	config	guratio	ns.			
4.	To a	nalyze	e the b	iasing	circu	ts of	BJT.							
5.	To s	tudy t	he cha	racter	istics of	of MC	DSFE	Γ.						
Course O	utcor	nes: A	After s	ucces	sful c	ompl	etion	of the	cour	se, the	e stude	ent wi	ll be ab	ole to:
CO 1	Illust	rate t	he V-I	charac	teristic	s of P	-N jun	ction D	iode a	ind spe	cial se	micon	ductor	
	devi	ces. (B	L-2)											
CO 2	Dem	onstra	te the	perfor	mance	of red	ctifiers	with a	nd wi	thout fi	ilters.	(BL-2)		
CO 3	Com	pare tl	he ope	rating	charac	teristi	cs of B	JT (BL-	3)					
CO 4	Anal	yze the	e BJT b	iasing	techni	ques. ((BL-4)							
CO 5	Inter	pret th	ne chai	acteris	stics of	MOSI	FET. (B	L-2)						
					С	O-PC) Map	ping						
CO							0							50
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO
CO1	1	2	3	4	5	6	7	8	9	10	11	12	1	2
	3	1											3	
CO2	3	2	3										3	
CO3	3	2											3	
CO4	3	3	2										2	
CO5	3	1	1				ledium						3	3

l: Low, 2-Medium, 3- High

COURSE CONTENT MODULE - 1 SEMICONDUCTOR DIODE&SPECIAL SEMICONDUCTOR DEVICES 10 Hrs emiconductor Diode: Principle and Structure of PN junction diode. Open circuited PN junction diode 10 Hrs

Semiconductor Diode: Principle and Structure of PN junction diode, Open circuited PN junction diode, Energy band diagram of PN diode, Diode current Equation, Volt-Ampere Characteristics, Temperature dependence of Volt-Ampere Characteristics, Diode capacitance.

Special Semiconductor Devices: Principle of operation and Characteristics of Varactor diode, Tunnel Diode, Photo diode, LED, SCR

At the end of the Module 1, student will be able to:

1.Define PN junction diode (BL-1)

2. Explain the operation of PN junction diode for both forward and reverse bias. (BL-2)

3.Explain the energy band diagram of PN junction diode (BL-2)

4. Interpret the effect of temperature on V-I characteristics of PN junction diode (BL-2)

- 5. Derive the expression for transition and diffusion capacitance (BL-2)
- 6. Explain V-I Characteristics of various special diodes. (BL-2)
- 7. Describe the principle of operation of thyristors. (BL-2)

MODULE -2

RECTIFIERS & FILTERS

10 Hrs

Diode applications: P-N junction diode as a rectifier - Half Wave Rectifier, Full Wave Rectifier, Bridge Rectifier, rectifier parameters, Harmonic components in Rectifier Circuits. Clippers and Clampers (Qualitative Treatment only)

Filters: Inductor Filters, Capacitor Filters, L- section Filters, π - section Filters, bleeder resistor.

At the end of the Module 2, students will be able to:

- 1. Explain the operation of a bridge rectifier. (BL-2)
- 2. Analyze the performance of rectifiers with and without filters. (BL-4)
- 3. Design half wave and full wave rectifier circuits. (BL-4)
- 4. Differentiate various rectifier circuits in terms of their parameter metrics.(BL-2)
- 5. Explain the importance of bleeder resistor (BL-2)

MODULE-3 BIPOLAR JUNCTION TRANSISTOR

9 Hrs

10 Hrs

Bipolar junction Transistor :Construction, Principle of Operation, transistor current components, transistor configurations, Transistor h-parameter model, calculation of h-parameters from characteristics, transistor as a switch, transistor as an amplifier.

At the end of the Module 3, students will be able to:

- 1. Discuss the current components and their relationships in BJT (BL-2)
- 2. Explain principle, operation and applications of BJT (BL-2)
- 3. Describe input and output Characteristics of BJT (BL-2)
- 4. Differentiate BJT configurations (CB,CC,CE) (BL-2)

MODULE-4 TRANSISTOR BIASING

Transistor Biasing: Need for biasing, operating point, load line analysis, Stabilization against variations in I_{CO} , V_{BE} and β , biasing and stabilization techniques: fixed bias, collector to base bias, voltage divider bias, bias compensation techniques, thermal runaway, heat sink and thermal stability. At the end of the Module 4, students will be able to:

- 1. Explain principle, operation and applications of MOSFET (BL-2)
- 2. Describe the operation and characteristics of Depletion MOSFET. (BL-2)
- 3. Explain the operation and characteristics of Enhancement MOSFET. (BL-2)
- 4. Differentiate enhancement and depletion mode MOSFET. (BL-2)

	METAL OXIDE SEMICONDUCTOR FIELD-EFFECT	0 11
MODULE-5	TRANSISTOR	9 Hrs

MOSFET: Construction of depletion mode and enhancement mode of NMOS and PMOS, Drain characteristics of MOSFET, Transfer Characteristics of MOSFET, MOSFET as a Switch, CMOS Inverter and it's Characteristics.

At the end of the Module 5, students will be able to:

1.Define biasing and stabilization (BL-1)

- 2.Explain the importance of thermal stability (BL-2)
- 3. Analyze the stabilization techniques.(BL-4)
- 4. Differentiate compensation techniques. (BL-2)

Content beyond syllabus:

- 1. Multi vibrators-Mono stable, Bi stable & Astable multi vibrators,
- 2. signal conditioning circuits-input signal determination, amplification, filtering.

Self-Study:

Contents to promote self-Learning:

SNO	Module	Reference
1	Semiconductor	https://www.electronics-tutorials.ws/diode/diode 3.html
	diode & Special	
	semiconductor	https://www.electrical4u.com/tunnel-diode
	devices	
2	Rectifiers and	https://www.electricaltechnology.org/2019/01/what-is-
	filters.	rectifier-types-of-rectifiers-their-operation.html
3	Bipolar junction	https://www.electronics-tutorials.ws/transistor/tran 2.html
	Transistor	
4	Transistor Biasing	https://www.tutorialspoint.com/amplifiers/methods_of_tran
		sistor_biasing.htm
5	Field effect	https://www.electronics-tutorials.ws/transistor/tran 5.html.
	transistors	

Text Book(s):

- 1. 1. J. Milliman and C Halkias, "Integrated electronics", 2nd Edition, Tata McGraw Hill, 1991.
- 2. L. Boylestad and Louis Nashelsky (2006), Electronic Devices and Circuits, 9th Edition, Pearson/Prentice Hall
- 3. Electronic Devices and Circuits by Lal Kishore, BS Publications.

Reference Book(s):

- 1. Behzad Razavi, "Microelectronics", Second edition, Wiley, 2013.
- 2. S. Salivahanan, N. Suresh Kumar, A. Vallavaraj (2008), Electronic Devices and Circuits, 2nd edition, Tata McGraw Hill, New Delhi.
- Jimmie J Cathey, "Electronic Devices and Circuits," Schaum's outlines series, 3rd edition, McGraw-Hill (India), 2010.

Online Resources /Web References:

1.<u>http://www.acadmix.com/eBooks_Download</u>

2.<u>https://www.freebookcentre.net/Electronics/Electronic-Circuits-Books.html</u>

3. https://nptel.iitm.ac.in/courses/108/108/108108122/

4. https://www.classcentral.com/course/swayam-microelectronics-devices-to-circuits-14198

5.https://www.khanacademy.org/science/electrical-engineering

6.<u>http://afrotechmods.com/tutorials</u>

7.<u>http://www.tutorialspoint.com/electronic devices</u>

	NARAYANA ENGINEERING COLLEGE:NELLORE									
20EC2001			DIGITA	L LOGIC	DESIGN			R20		
Semester	Hours / Week			Total	Credit	`ks				
Semester	L	Т	Р	hrs	С	CIE	SEE	TOTAL		
III	3	0	0	48	3	40	60	100		
Pre-requis	ite: Basic	knowledge	e on numbe	er system a	nd algebra.					
Course Ob	Course Objectives:									
1.	To study t	the basic c	oncepts of	number sy	stems and	binary cod	es.			
2.				ns using ma		method.				
3.	3. To design combinational and sequential circuits.									
4.		-		ters using F						
5.			A	memory of	<u> </u>					
Course Ou	tcomes: A	fter succes	sful compl	etion of the	e course, th	e student	will be able	e to:		
CO 1	Use numb	er systems	, binary co	des and Boo	olean algeb	ra to imple	ement digita	al circuits.		
	(BL-3)									
CO 2	Apply min	imization t	echniques	on Boolean	expression	s. (BL-3)				
CO 3	Design combinational circuits using logic gates. (BL-3)									
CO 4	Analyze sy	/nchronous	s sequentia	l circuits. (B	SL-4)					

CO 5	Class	Classify the memories & programmable logic devices. (BL-2)												
	CO-PO Mapping													
						Р							PS	50
СО	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	2	1										1	
CO2	3	3	3	1									1	
CO3	3	3	3	1									1	1
CO4	3	1	2	1									2	1
CO5	2	2											1	1
	1	1	1	1	1: Lov	w, 2-M	ledium	, 3- Hi	igh	1	1	1		

COURSE CONTENT									
MODULE – 1	NUMBER SYSTEMS & BOOLEAN ALGEBRA	10 h							
Number Systems	Number Systems: Introduction, Number Systems, Number base conversions, 1's and 2's								
Complements, BC	Complements, BCD code, Excess -3 codes, Gray code, ASCII code, Error Detection and Correction								
Codes. Boolean A	lgebra: Basic definition, Basic theorems and properties, Boolean F	unctions, Canonical							
& Standard forms,	Logic gates, implementation of Boolean functions using logic gates	8							
At the end of the N	Adule 1, students will be able to:								
1 1 1									
	er systems. (BL-1)								
	lifferent code conversions. (BL-2)								
	3. List Theorem's and properties of Boolean algebra (BL-1)								
	e functionality of logic gates(BL-2)								
MODULE -2	SIMPLIFICATION OF BOOLEAN FUNCTIONS	10 h							
	augh map simplification, Don't care conditions, Prime Implicants								
method Simplifica	tion, NAND & NOR Implementations, Two Level Implementations	3.							
At the end of the N	Indule 2, students will be able to:								
1 4 1 1		(DL 2)							
	ic laws and De Morgan's theorems to simplify Boolean expressions	(BL-3)							
-	ap and Q-M method to minimize Boolean expressions. (BL-2)								
-	t Boolean expression using universal gates. (BL-3)								
^	4. Implement Boolean expression using two level methods. (BL-3)								
MODULE-3	COMBINATIONAL CIRCUITS	9 h							
	Introduction, Design Procedure, Adders, Sub tractor, Binary Adder-Sub tractor, BCD Adder, Binary								
Multiplier, Magnitude Comparator, Multiplexers, De-multiplexers, Decoders, Encoders and Code									
Converters.									

At the end of the Module 3, students will be able to:

- 1. Design combinational logic circuits. (BL-3)
- 2. Implement Boolean expression using multiplexer. (BL-3)
- 3. Implement higher order MUX using lower order MUX.(BL-3)
- 4. Design code converters using gates. (BL-3)

4. Design code converters using gates. (DL-5)									
MODULE-4	SEQUENTIAL CIRCUITS	10 h							
introduction, Latches, Flip-flops, Master-slave flip flops, Edge-triggered flip-flops, Flip-Flop									
conversions, Desi	conversions, Design of Synchronous Sequential Circuits: State Equations, State Table, State reduction,								
State assignment,	State diagram , Mealy and Moore machine models, Register	rs, Shift Registers,							
Counters: Synchro	nous counters, Asynchronous counters & other counters.								
At the end of the N	Module 4, students will be able to:								
1. Describe l	behavior of latches & flip flops. (BL-2)								
2. Analyze th	ne flip-flop conversions(BL-3)								
3. Analyze s	ynchronous sequential circuits. (BL-3)								
4. Explain th	4. Explain the design procedure of sequential circuits(BL-2)								
5. Design synchronous sequential circuits using state reduction & assignment process. (BL-3)									
MODULE-5	MODULE-5 MEMORY & PROGRAMMABLE LOGIC DEVICES 9 h								
Introduction Dom	ntraduction Dandem Access Memory Trace of DAM Memory deciding Deed Only Memory Traces								

Introduction, Random Access Memory, Types of RAM, Memory decoding, Read Only Memory, Types of ROM, Flash memory, Programmable Logic Devices (PLDs): Basic concepts, Programmable Read Only Memory (PROM), Programmable Array Logic (PAL) and Programmable Logic Array(PLA). At the end of the Module 6, students will be able to:

- 1. Explain PROM, PAL and PLA. (BL-2)
- 2. Compare digital logic families. (BL-2)
- 3. Illustrate the characteristics of digital IC's . (BL-2)

Total hours: 48 hours

Content beyond syllabus:

- 1. Representation of signed & unsigned binary numbers in digital computer
- 2. Binary subtraction operation using 1's and 2's complement methods in digital circuits

Self-Study:

Contents to promote self-Learning:

SNO	Module	Reference
1	Number systems	https://www.geeksforgeeks.org/digital-electronics-logic-design- tutorials/
2	Simplification of Boolean functions	https://www.electrical4u.com/simplifying-boolean-expression-using- k-map/ https://www.electronicshub.org/k-map-karnaugh-map

3	Combinational circuits	https://www.allaboutcircuits.com/textbook/digital/
4	Neguential Circuits	https://www.electronics-tutorials.ws/sequential/seq_1.html https://technobyte.org/counters-up-down-synchronous-asynchronous/
5		https://www.tutorialspoint.com/digital_circuits/digital_circuits_progra mmable_logic_devices.htm

Text Book(s):

- 1. M. Morris Mano, M.D. Ciletti, "Digital Design", 5th edition, Pearson, 2018.
- 2 John F Wakely Digital Design Principles And Practices, Pearson Publication, Fourth edition
- 3 Anil K. Maini, "Digital Electronics: Principles, Devices and Applications", Willey, 2007

Reference Book(s):

- 1. Anand Kumar, Switching Theory and Logic Design, PHI,2008
- 2. John. M Yarbrough, "Digital Logic Applications and Design", Thomson Learning, 2006.
- 3. R. P. Jain, "Modern Digital Electronics", 4th edition, McGraw Hill Education (India Private Limited), 2012.

Online Resources / Web References:

- 1. <u>https://nptel.ac.in/courses/108/105/108105113/</u> (IIT- Kharagpur digital Circuits)
- 2. <u>https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-004-computation-</u> <u>structures-spring-2017/c4/</u>
- <u>https://nptel.ac.in/courses/106/105/106105185/</u>(IIT- Kharagpur Switching Circuits and Logic Design)
- 4. <u>https://www.researchgate.net/publication/264005171_Digital_Electronics</u>
- 5. https://www.academia.edu/37445384/Anil_K._Maini_Digital_Electronics_Principles_01.04.16.pdf
- 6. <u>https://intuitionke.weebly.com/uploads/1/1/8/2/118271274/digital_principles_switching_theory.pdf</u>
- 7. <u>https://www.javatpoint.com/digital-electronics</u>

NARAYANA ENGINEERING COLLEGE:NELLORE											
	NETWORK THEORY R20										
20EC2002	C2002										
Semester	Ho	ours / We	ek	Total	Credit		Max Mar	rks			
	L	Т	Р	hrs	С	CIE	SEE	TOTAL			
III	3	0	0	45	3	40	60	100			
Pre-requis	i te: Fund	amental	of Basic E	lectrical c	ircuits						
Course Ob	jectives:										
1.	To unders	tand frequ	ency respoi	nse in elect	trical circuit	S					
2.	•	•	•	-	Pass filter.						
3.	Evaluate t	he behavi	our of net	works for	transient a	nalysis of	first order	and second			
	order.	order.									
4.	•	•		• •	place transf						
5.		••	•	work analy	ysis using n	etwork pai	rameters, w	vith different			
	types of co										
Course Ou								l be able to:			
CO 1	Describe t	he Series r	esonance ,	parallel res	onance and	l analyze th	ne locus dia	gramsof			
	R,L,C(BL-2)									
CO 2	Analyze th	ne DC trans	ients of R,L	.,C (BL-4)							
CO 3	Analyze th	Analyze the AC transients of R,L,C (BL-4)									
CO 4	Derive Tw	o port net	work param	neters of El	ectrical circ	uits(BL-3)					
CO 5	Analyze th	ne Filters a	nd Network	(functions	(BL-4)						

	CO-PO Mapping													
CO						Р	0						PS	50
	PO 1	PO	PO	PO	PO	PO	PO 7	PO	PO	PO 10	PO 11	PO 12	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	2	2	1									1	1
CO2	3	2	2	2									1	1
CO3	3	2	2	2									1	1
CO4	3	3	2	2									1	1
CO5	3	3	2	2									1	1

COURSE CONTENT							
MODULE – 1 RESONANCE 9hrs							
Introduction, Definition of quality factor ${f Q}$ of inductor and capacitor, Series resonance, Bandwidth of the							
series resonant circuits, Parallel resonance (or anti-resonance), Locus diagram for Series R-L, R-C, R-L-C							
and Parallel Combination with Variation of Parameters.							
1, students will be able to:							
1. Explain the series and parallel resonance.(BL-2)							
Understand the effect of resonance on series and parallel resonance circuits.(BL-2)							
	RESONANCE uality factor Q of inductor and capacitor, Series resulted resonance (or anti-resonance), Locus diagram for ith Variation of Parameters. 1 , students will be able to: rallel resonance.(BL-2)						

3. Understand the co	ncept of locus diagrams. (BL-2)	
MODULE -2	DC TRANSIENT ANALYSIS	9hrs
Transient Response	of R-L, R-C, R-L-C Series and Parallel Circuits for	D.C Excitation-Initial
Conditions-Solution	Method Using Differential Equations and Laplace Tra	nsforms, Response of
R-L & R-C Networks	to Pulse Excitation.	
At the end of the Mo	odule 3, students will be able to:	
1. Explain t	he transient phenomenon in DC excitations. (BL-2)	
2. Explain A	pplication of Laplace transform for solution of D.C trai	nsient circuits. (BL-2)
3. Compare	the classical method and Laplace transform approach	in sinusoidal
excitatior	ns. (BL-2)	
MODULE -3	AC TRANSIENT ANALYSIS	9hrs
Transient Response	of R-L, R-C, R-L-C Series and Parallel Circuits for Sinusc	oidal Excitations-Initial
	Method Using Differential Equations and Laplace Tran	sforms.
At the end of the Mod	ule 4, students will be able to:	
	ansient phenomenon in AC excitations. (BL-2)	
	AC transient analysis in electrical circuits to know	w the power system
stability. (BL-		
3. Develop know	vledge on R-L, R-C and R-L-C circuit analysis in A.C. (Bl	-3)
MODULE -4	TWO PORT NETWORKS	9Hrs
	rameters: Impedance, Admittance, Transmission and Hybr	
	and Symmetry conditions, Concept of Transformed Netw	ork, Two Port Network
Parameters Using Trar		
At the end of the Mod	ule 5, students will be able to:	
1. Understa	nd the concept of two port network theory. (BL-2)	
2. Verify the	e Reciprocity and Symmetry conditions for the given two po	ort network. (BL-1)
3. Understa	nd the concept of Transformed Network (BL-2)	
MODULE-5	FILTERS & NETWORK FUNCTIONS	9HRS
Filters – Low Pass –	High Pass and Band Pass - RC, RL filters- derived filte	rs and composite filters
design – Attenuators	- Network functions for one port and two port networks	, pole-zeros of network
functions and network	stability	
At the end of the Mo	odule 6, students will be able to:	
1. Explain the ty	pes of filters. (BL-2)	
2. Explain the p	arameters for the design of various filters. (BL-2)	
3. Explain the p	oles and zeros of a given transfer function. (BL-2)	
	Tot	al hours: 45 hours
r		
Content beyond syll	abus:	

- Scattering Matrix
 Fourier method of waveform analysis

Self-Study:

Contents to promote self-Learning:

SNO	Торіс	Reference
1	Resonance and locus	https://www.youtube.com/watch?v=6mC0xkXsFdw
	diagram	

2	DC Transient analysis	https://www.youtube.com/watch?v=15d-gyoBxIQ
3	AC Transient analysis	https://www.youtube.com/watch?v=SPs5o7SzcOo
4	Two port network	https://nptel.ac.in/courses/108/102/108102042/
5	Filters& Network	https://www.youtube.com/watch?v=u59IUA6uvjk
	function	

Text Book(s):

1. A Sudhakar and Shyam Mohan SP, "Circuits and Networks: Analysis and Synthesis", TMH, 5th Edition, New Delhi, 2015.

2. Ravish R., Network Analysis and Synthesis, 2/e, McGraw-Hill, 2015

Reference Book(s):

1. S.Sivanagaraju, G.Kishor & C.Srinivasa Rao, "Electrical Circuit Analysis", Cengage Learning, 1st Edition, 2010.

2. A. Chakrabarti : Circuit Theory (Analysis and Synthesis), Dhanpat Rai &Co

3. Joseph A. Edminister and Mahmood Nahvi, "Electric Circuits Schaum"s Outline Series", 6th Edition, Tata McGraw-Hill, 2014, New Delhi.

Online Resources / Web Reference:

1. https://nptel.ac.in/courses/108/105/108105159/

2.https://nptel.ac.in/content/storage2/courses/108105053/pdf/L-

10(GDR)(ET)%20((EE)NPTEL).pdf

3.https://nptel.ac.in/content/storage2/courses/108105053/pdf/L-1(TB)(ET)%20((EE)NPTEL).pdf

4. https://en.wikibooks.org/wiki/Circuit_Theory

5. https://nptel.ac.in/content/storage2/courses/117108107/Lecture%2022.pdf

6. https://nptel.ac.in/content/storage2/courses/108101091/Week%208%20Slides.pdf

7.http://www.mathtutordvd.com/products/Engineering-Circuit-Analysis-Volume-1.cfm

8. http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-002-circuitsandelectronics-spring-2007/video-lectures/lecture-2/

9. http://www.facstaff.bucknell.edu/mastascu/elessonsHTML/Circuit/Circuit1.html

10. https://opencourses.emu.edu.tr/course/view.php?id=3

]	NARAYAN	NA ENGIN	EERING	COLLEG	E:NELLO	RE	
20ES1515		ELECT	RONIC D	EVICES	& CIRCUI	TS LAB		R20
Semester	H	Iours / Wee	ek	Total	Credit		Max Mar	:ks
	L	Т	Р	hrs	С	CIE	SEE	TOTAL
III	0	0	3	36	1.5	40	60	100
Pre-requis	ite: Basic	knowledg	e on semic	onductor	physics.			
Course Ob	iectives:							

1. To Gain Knowledge on basic electronic devices.

2. To Observe the characteristics of various electronic devices.

3. To prepare students for designing various biasing circuits

Course Outcomes: After successful completion of the course, the student will be able to:

CO 1 Demonstrate the V-I characteristics of PN junction diode, Zener Diode and LED.

CO 2 Design various rectifiers with filters for a given specifications

CO 3 Analyze the DC Characteristics of BJT and MOSFET

					C	O-PO) Map	ping						
	PO												PSO	
СО	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	1	2						3	2		2	2	2
CO2	3	1	2						3	2		2	2	2
CO3	3	1	1						3	2		2	2	2
					1: Lov	w, 2-M	ledium	, 3- Hi	gh					

COURSE CONTENT	CO
Task-1: PN Junction Diode	
Objective: To Verify the Volt- Ampere characteristics of a PN junction diode and find static, dynamic and reverse resistances of the diode from the graphs.	CO1
Task-2: ZENER DIODE	
Objective: To design a Zener diode based voltage regulator against variations of supply and load.	CO 2
Task-3: Half Wave Rectifier	
Objective: To design a half wave rectifier for the given specifications with and without filters and verify experimentally and draw suitable graphs.	CO 3
Task-4: FULL WAVE RECTIFIER	
Objective: To design a full wave rectifier for the given specifications with and without filters, and verify the given specifications experimentally. Vary the load and find ripple factor. And draw suitable graphs.	
Task-5: COMMON EMITTER CONFIGURATION	
Objective: To Verify the input and output characteristics of BJT in Common Emitter configuration experimentally and find the required h – parameters from the graphs	CO 3
Task-6:Common Emitter Configuration	
Objective: To Verify the input and output characteristics of BJT Common Emitter	
configuration experimentally and find h – parameters from the graph	CO3
Task-7: Common Collector configuration	

Objective: To Verify the input and output characteristics of BJT Common Collector configuration experimentally and find h – parameters from the graph	CO3
Task-8: MOSFET Characteristics	
Objective: To Study and draw the Volt Ampere characteristics of MOSFET	CO 4
Task-9: MOSFET As Switch	
Objective: To Study the Switching characteristics.	CO 4
Task-10:LED Characteristics	CO4
Objective: To Study the characteristics of LED	

Additional Experiments	
Task-11: VOLTAGE- DIVIDER BIAS CIRCUIT USING BJT.	
Objective: To Design and analyse the voltage- divider bias/self bias circuit using BJT	CO 1
Task-12: CLIPPERS AND CLAMPER CIRCUITS	
Objective: To Verify clipping and clamper circuits using PN junction diode and draw the suitable graphs	CO 1
Virtual Labs:	
Virtual Labs Links:	
1. <u>http://ee-iitb.vlabs.ac.in/ee-iitb/</u>	

Text Book(s):

- 1. Fundamentals of Electronic Devices and Circuits Lab Manual By David Bell
- 2. Electronics Lab Manual By Navas K. A
- 3. Fundamentals of Electronic Circuit Design, Getting Started: MultiSim Textbook Edition byDavid J. Comer, Donald T. Comer.

Reference Book(s):

- 1. A Guide to Circuit Simulation and Analysis Using PSPICE by Paul W. Tuinenga
- 2. Ben G. Streetman, Sanjay Banerjee, Solid State Electronic Devices, Pearson Prentice Hall, 2006.
- 3. Robert T. Paynter, "Introductory Electronic Devices and Circuits", Pearson Education, 7th Edition
- 4. Sedra A.S. and K.C. Smith, "Micro Electronic Circuits", Oxford University Press, 5th Edition.

Web References:

- 1. https://www.academia.edu/28016003/EDC_by_Lal_kishore
- 2. https://www.academia.edu/9984476/Electronic_devices_and_circuit_theory_robert_boylestad_1

	NARA	YANA]	ENGINE	EERING	COLLI	EGE:NE	LLORE	
20EC2501	Digital Logic Design LabR20							
Semester	Н	ours / Wee	ek –	Total	Credit		Max Mar	·ks
	L	Т	Р	hrs	С	CIE	SEE	TOTAL
IV	0	0	3	33	1.5	40	60	100
Pre-requis	ite: Electro	onic Circu	its, Basic	Electronic	8			
Course Ob	jectives:							
1. Stud	dents will le	earn and ur	derstand th	e Basics of	digital ele	ctronics		
2. Stud	lents are ab	le to desig	n basic logi	c circuits,				
3. Abl	e to design	combinatio	onal circuits	5.				
4. Abl	e to design	sequentia	l circuits.					
Course Ou	tcomes: A	fter succes	sful comp	letion of the	ne course,	the student	will be abl	le to:
CO 1	Demonstr	ate the tru	th table of	various exp	pressions a	nd combina	itional circu	iits
	using logic	c gates. (BL	2)					
CO 2	Develop	various co	mbinationa	l circuits su	ich as adde	rs, sub-trac	tors, compa	arators,
	multiplexe	ers and de-	multiplexe	rs. (BL-3)				
CO 3	Construct	flips-flops,	counters a	nd shift re	gisters. (BL·	-3)		
CO 4	Simulate f	ull adder a	nd up/dow	n counters	. (BL-3)			

					С	CO-PC) Map	ping						
СО						P	0						PS	50
	PO	PO	PO	PO	PO	РО	РО	PO	PO	PO	PO	PO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	2	3						2	2		2	2	3
CO2	2		3						3	2		2	2	2
CO3	3	3	3						2	2		2	2	3
CO4	3	2	3						3	2		2	2	2
					1: Lov	w, 2-M	ledium	, 3- Hi	gh					

COURSE CONTENT	CO
Task-1 : STUDY OF LOGIC GATES	
Objective: To verify the Truth Table verification of AND, OR, NOT, NAND, NOR, EX-OR & EX-NOR gates.	CO1
Task-2 : FULL ADDER & SUBTRACTOR	
Objective: To realize the Full Adder and Sub-tractor circuits using basic logic gates and to verify their truth tables.	CO 2
Task-3: 4-BIT PARALLEL ADDER/SUBTRACTOR USING IC 7483	
Objective: To perform the addition and subtraction of two 4-bit binary numbers.	CO 2
Task-4: 4:1 MULTIPLEXER USING GATES	
Objective : To realize the 4 to 1 Multiplexer using gates.	CO 2
Task-5 : REALIZATION OF 1:8 DEMUX USING IC 74138	
Objective: To study the function of de-multiplexer using IC 74138.	CO 2

Task-6 : REALIZATION OF CLOCKED SR &JK FLIP FLOP	
Objective: 1. To verify the Truth Table of clocked SR Flip Flop 2. To verify the Truth Table of JK Flip Flop	CO 3
Task-7 : REALIZATION OF SHIFT REGISTERS USING IC7474	
Objective : To implement different types of shift registers like Serial In Serial Out [SISO], Serial In Parallel Out [SIPO], Parallel In Parallel Out [PIPO] and Parallel In Serial Out [PISO] using D-flip flops and to verify their observation table.	CO 3
Task-8: RING COUNTER AND JOHNSON (TWISTED RING) COUNTER	
Objective : To design and set up four bit Johnson and ring counter using JK Flip-Flops.	CO 4
Task-9: REALIZATION OF MOD – N COUNTER USING 7490	
Objective : To realize a Modulo N-counter using 7490 and verify the expected truth table and display the output waveform for a square wave input of given frequency. (N–to be specified, N=9).	CO 4
Task-10: MAGNITUDE COMPARATOR	
Objective : To Design & Verify the 4-bit Magnitude Comparator using two 2- bit magnitude comparators.	CO 4
Additional Experiments	
Task-1: DESIGN AND IMPLEMENTATION OF SEQUENCE GENERATOR	
Objective : Design and testing of sequence generator using D flip flop	CO 2
Task-2: INTERFACING 7-SEGMENT DISPLAY SYSTEM WITH IC 7447 TO DISPLAY 0-9	
Objective : To interface 7-segment display with IC 7447 to display the decimal digits from 0 to 9.	CO 2
Virtual Labs: <u>http://vlabs.iitb.ac.in/vlabs-dev/labs/digital-electronics/index.html</u>	

Text Book(s):

M. Morris Mano, M.D. Ciletti, "Digital Design", 5th edition, Pearson, 2018.
 R. P. Jain, "Modern Digital Electronics", 4th edition, McGraw Hill Education (India Private Limited), 2012.

3. Anand Kumar, Switching Theory and Logic Design, PHI,2008

Reference Book(s):

1. Digital Fundamentals, Thomas L. Floyd, Pearson Education, ISBN:9788131734483

2. Digital Principles and Applications, Malvino and Leach, TMH

Web References:

1. http://www.vlab.co.in/

- 2. http://www.asic-world.com/
- 3. http://electrical4u.com/
- 4. http://www.electronics-tutorials.ws

		NARAYAN	NA ENGIN	EERING	COLLEGE	:NELLOR	E	
20EC2002			Netw	ork Theo	ry lab			R-20
Semester	Hours / Week			Total	Credit		arks	
Jennester	L	Т	Р	hrs	С	CIE	SEE	TOTAL
III	0	0	3	36	1.5	40	60	100
Pre-requisit		concepts	of electri	cal circui	ts			
Course Obje	ctives:							
А. То	understa	nd the Ser	ies Resor	Par, nance	allel Reso	nace,		
В. То	understa	nd Locus	Of RLC Cit	rcuits.				
С. То	learn to o	compute a	nd to ana	lyze the I	OC Transie	ents,AC Tr	ansients	for RLC series
ра	rallel circ	uits						
		d apply the	-	-				
E. To	analyse t	he types c	of filters a	nd design	the filter	s for requi	red cond	itions for a
giv	ven syster	n.						
Course Outc	omes: Af	ter succes	sful com	pletion o	f the cour	se. the st	udent wil	l be able to:
				^				
CO 1	Demonstr	ate the cor	icept of res	sonance an	d locus diag	grams of R,I	_,C.(BL-2)	
CO 2	Analyze tl	ne transient	response	of AC and	DC circuits.	(BL-3)		
		<u> </u>					<u></u>	
60.0			ntally the t	wo port ne	twork para	meters and	filters and	verify their
CO 3	result.(BL	-2)						

	SK-1 Transient response of RL and RC circuit
	Objective:
	To verify the Transient response of RL circuit and to find the time constant of RL and RC network.
TA	SK-2 Transient response of RLC series circuit
	Objective:
,	To verify the Transient response of RLC series circuit
TA	SK -3 Transient response of RLC parallel circuit
(Objective:
То	verify the Transient response of RLC parallel circuit
TA	SK-4 Locus Diagrams of RL and RC Series Circuits
(Objective:
То	Plot the current locus diagrams for RL and RC circuits.
TA	SK-5 Frequency response of series resonance circuit with analysis and design
	Objective:
,	To determine resonant frequency, band width and Q-factor for series RLC circuits.
TA	SK-6 Frequency response of parallel resonance circuit with analysis and design.
(Objective:
-	To determine resonant frequency, bandwidth and Q-factor for parallel RLC circuits
TA	ASK-7 Z and Y Parameters
(Objective:
	To calculate and verify 'Z' parameters and Y parameters of two-port network.
TA	SK-8 Transmission and Hybrid Parameters
Ob	ojective:
	calculate and verify 'ABCD' parameters and "h" parameters of two-port network
TA	SK -9 Design and frequency response of constant 'k' low pass & high pass filters
	jective:
То	plot the frequency response of Low pass filter and High pass filter.

Objective:

To study frequency response of Band pass filter

Additional Experiments: PSPICE SIMULATION

TASK-11 Simulation of AC Circuits

Objective:

To simulate a simple AC circuits using PSpice

TASK-12 DC Transient Response

Objective:

To simulate a simple DC circuits using PSpice

Text Book(s):

1. A Sudhakar, Shyammohan S Palli," Circuits & Networks", Tata Mc Graw-Hill,4thEdition,2010 2. A Chakrabarthy, "ElectricCircuits",DhanpatRai&Sons,6thEdition,2010.

Reference Book(s):

1. Willam Hayt, Jack E.Kemmerly, Steven M. Durbin," Engineering Circuit Analysis ", Tata Mc Graw-Hill, 8th Edition 2012

2. Rudra ratap," Getting Started with MATLAB: A Quick Introduction for Scientists and Engineers", Oxford University Press,1st Edition,1999.

CO-P	CO-PO Mapping													
	РО									PSO				
CO	РО	PO	РО	PO	PO	РО	PSO	PSO						
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	3		2					2	2			1	1
CO2	3	3		2					1	2			1	1
CO3	3	3	2	2	2				2	2			3	3
1: Lov	: Low, 2-Medium, 3- High													

	NARAYANA ENGINEERING COLLEGE:NELLORE								
20EC2003			ANALO	G ELECT	RONICS			R20	
Semester	Н	ours / Wee	k	Total	Credit		Max Mar	·ks	
	L	Т	Р	hrs	С	CIE	SEE	TOTAL	
IV	3	0	0	48	3	40	60	100	
Pre-requis	Pre-requisite: Basic knowledge on concepts of electronic devices.								
Course Obj	Course Objectives:								
1.	To study t	he effect of	negative f	eedback or	n amplifier o	characterist	ics.		
2.	•	To design RC & LC oscillator circuits.							
3.	3. To analyze amplifier frequency response at low and high frequencies.								
4.	To study coupling schemes and multi stage amplifiers.								
5.	5. To analyze the large signal amplifiers and tuned amplifiers.								
Course Ou	tcomes: A	fter succes	sful comp	letion of t	he course, t	he student	will be abl	e to:	
CO 1	Analyze th	ne small sig	nal amplifi	ers at low f	frequencies	and high f	requencies.	(BL-4)	
CO 2	Illustrate t	the concep	ts of negati	ive feedba	ck amplifier	s. (BL-2)			
CO 3	Illustrate the working principle of oscillators. (BL-2)								
CO 4	Analyze th	Analyze the parameters of multi stage amplifiers.(BL-4)							
CO 5	Interpret	the concep	ots of Powe	r amplifier	s and Tune	d amplifier:	s.(BL-2)		

					C	O-PC) Map	ping							
СО						Р	0						PSO		
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	
CO1	3	3	2										2		
CO2	3	3	2										2		
CO3	3	3	1										1		
CO4	3	3	2	2									1	2	
CO5	3	2	1	2									2	3	
					1: Lov	w, 2-M	ledium	i, 3- Hi	igh						

	COURSE CONTENT	
MODULE – 1	SMALL SIGNAL LOW FREQUENCY & HIGH FREQUENCY ANALYSIS	11 Hrs

Low Frequency Analysis:

Transistor hybrid model, determination of h-parameters, conversion of h-parameters, Analysis of CB, CE and CC amplifiers using exact and approximate analysis.

High Frequency Analysis:

Hybrid- π Common Emitter transistor model, Hybrid π conductance's, Hybrid π capacitances, Validity of hybrid π model, determination of high-frequency parameters in terms of low-frequency parameters, CE short circuit current gain, Current gain with resistive load.

At the end of the Module 1, students will be able to:

1. Define Transistor hybrid model.(BL-1)

2. Compare different transistor amplifiers. (BL-2)								
3. Explain the effect of coupling and emitter bypass capacitors. (BL-2)								
4. Explain the gain bandwidth product of amplifiers.(BL-2)								
5. Analyze the Emitter follower frequency response at high frequencies.(BL-4)								
6. Analyze the hybrid π CE transistor model. (BL-4)								
MODULE -2 FEEDBACK AMPLIFIERS	9 Hrs							
Feedback concept, types of feedback, classification, feedback topologies, Character	ristics of negative							
feedback amplifiers, Generalized analysis of feedback amplifiers, Determination of input & output								
impedance of different feedback amplifier, Method of Analysis of Feedback Amplifi	ers.							
At the end of the Module 2, students will be able to:								
1. Define negative and positive feedback in amplifiers.(BL-1)								
2. Explain the effect of negative feedback on amplifier characteristics.(BL-2)								
3. Compare different feedback topologies. (BL-2)								
MODULE-3 OSCILLATORS	9 Hrs							
Oscillator principle, condition for oscillations, types of oscillators, Generalized	-							
Oscillators, Hartley oscillator & Colpitt's oscillator using BJT and FET with 1	•							
Crystal oscillators, RC-phase shift oscillator & Wein bridge oscillator using B	JT with relevant							
analysis, Frequency & amplitude stability of oscillators.								
At the end of the Module 3, students will be able to:								
1. Explain condition for oscillations and types of oscillators.(BL-2)								
2. Illustrate the operation of RC oscillators.(BL-2)								
3. Explain the operation of LC oscillators.(BL-2)								
4. Demonstrate the frequency and amplitude stability of oscillators(BL-2)								
MODULE-4 MULTISTAGE AMPLIFIERS	10 Hrs							
	Classification of amplifiers, Methods of coupling, Generalized analysis of Cascaded amplifier,							
Analysis of two stage RC coupled amplifier with frequency response, Cascode amplifier, Emitter								
	mplifier, Emitter							
follower, Darlington pair amplifier, Differential amplifier using BJT.	implifier, Emitter							
follower , Darlington pair amplifier, Differential amplifier using BJT.At the end of the Module 4, students will be able to:	implifier, Emitter							
follower , Darlington pair amplifier, Differential amplifier using BJT.At the end of the Module 4, students will be able to:1. Explain the concept of cascading and coupling schemes(BL-2)	implifier, Emitter							
 follower , Darlington pair amplifier, Differential amplifier using BJT. At the end of the Module 4, students will be able to: Explain the concept of cascading and coupling schemes(BL-2) Analyze two stage RC coupled amplifier (BL-4) 	implifier, Emitter							
 follower , Darlington pair amplifier, Differential amplifier using BJT. At the end of the Module 4, students will be able to: Explain the concept of cascading and coupling schemes(BL-2) Analyze two stage RC coupled amplifier (BL-4) Summarize the darlington amplifier parameters.(BL-2) 	implifier, Emitter							
 follower , Darlington pair amplifier, Differential amplifier using BJT. At the end of the Module 4, students will be able to: Explain the concept of cascading and coupling schemes(BL-2) Analyze two stage RC coupled amplifier (BL-4) Summarize the darlington amplifier parameters.(BL-2) Explain differential amplifier with BJT. (BL-2) 								
follower , Darlington pair amplifier, Differential amplifier using BJT.At the end of the Module 4, students will be able to:1. Explain the concept of cascading and coupling schemes(BL-2)2. Analyze two stage RC coupled amplifier (BL-4)3. Summarize the darlington amplifier parameters.(BL-2)1. Explain differential amplifier with BJT. (BL-2)MODULE-5POWER AMPLIFIERS & TUNED AMPLIFIERS	9 Hrs							
follower , Darlington pair amplifier, Differential amplifier using BJT.At the end of the Module 4, students will be able to:1. Explain the concept of cascading and coupling schemes(BL-2)2. Analyze two stage RC coupled amplifier (BL-4)3. Summarize the darlington amplifier parameters.(BL-2)1. Explain differential amplifier with BJT. (BL-2)MODULE-5POWER AMPLIFIERS & TUNED AMPLIFIERSPower Amplifiers: Classification, Class A Power Amplifier, Distortion, Second hard	9 Hrs monic Distortion,							
follower , Darlington pair amplifier, Differential amplifier using BJT.At the end of the Module 4, students will be able to:1. Explain the concept of cascading and coupling schemes(BL-2)2. Analyze two stage RC coupled amplifier (BL-4)3. Summarize the darlington amplifier parameters.(BL-2)1. Explain differential amplifier with BJT. (BL-2)MODULE-5POWER AMPLIFIERS & TUNED AMPLIFIERSPower Amplifiers: Classification, Class A Power Amplifier, Distortion, Second harClass B Amplifier, Push- pull amplifier, Complementary Symmetry Class AB A	9 Hrs monic Distortion,							
follower , Darlington pair amplifier, Differential amplifier using BJT.At the end of the Module 4, students will be able to:1. Explain the concept of cascading and coupling schemes(BL-2)2. Analyze two stage RC coupled amplifier (BL-4)3. Summarize the darlington amplifier parameters.(BL-2)1. Explain differential amplifier with BJT. (BL-2)MODULE-5POWER AMPLIFIERS & TUNED AMPLIFIERSPower Amplifiers: Classification, Class A Power Amplifier, Distortion, Second hard	9 Hrs monic Distortion,							
follower , Darlington pair amplifier, Differential amplifier using BJT.At the end of the Module 4, students will be able to:1. Explain the concept of cascading and coupling schemes(BL-2)2. Analyze two stage RC coupled amplifier (BL-4)3. Summarize the darlington amplifier parameters.(BL-2)1. Explain differential amplifier with BJT. (BL-2)MODULE-5POWER AMPLIFIERS & TUNED AMPLIFIERSPower Amplifiers: Classification, Class A Power Amplifier, Distortion, Second hardClass B Amplifier, Push- pull amplifier, Complementary Symmetry Class AB AAmplifier, Thermal stability and Heat sink.	9 Hrs monic Distortion, mplifier, Class C							
follower , Darlington pair amplifier, Differential amplifier using BJT.At the end of the Module 4, students will be able to:1. Explain the concept of cascading and coupling schemes(BL-2)2. Analyze two stage RC coupled amplifier (BL-4)3. Summarize the darlington amplifier parameters.(BL-2)1. Explain differential amplifier with BJT. (BL-2)MODULE-5POWER AMPLIFIERS & TUNED AMPLIFIERSPower Amplifiers: Classification, Class A Power Amplifier, Distortion, Second hard Class B Amplifier, Push- pull amplifier, Complementary Symmetry Class AB A Amplifier, Thermal stability and Heat sink.Tuned Amplifiers: Tuned Circuit, Q-Factor, Single tuned capacitive coupled amplifier	9 Hrs monic Distortion, mplifier, Class C							
follower , Darlington pair amplifier, Differential amplifier using BJT.At the end of the Module 4, students will be able to:1. Explain the concept of cascading and coupling schemes(BL-2)2. Analyze two stage RC coupled amplifier (BL-4)3. Summarize the darlington amplifier parameters.(BL-2)1. Explain differential amplifier with BJT. (BL-2)MODULE-5POWER AMPLIFIERS & TUNED AMPLIFIERSPower Amplifiers: Classification, Class A Power Amplifier, Distortion, Second harden Class B Amplifier, Push- pull amplifier, Complementary Symmetry Class AB AAmplifier, Thermal stability and Heat sink.Tuned Amplifiers: Tuned Circuit, Q-Factor, Single tuned capacitive coupled amCascading Single tuned amplifiers on Band width, Stability.	9 Hrs monic Distortion, mplifier, Class C							
follower , Darlington pair amplifier, Differential amplifier using BJT.At the end of the Module 4, students will be able to:1. Explain the concept of cascading and coupling schemes(BL-2)2. Analyze two stage RC coupled amplifier (BL-4)3. Summarize the darlington amplifier parameters.(BL-2)1. Explain differential amplifier with BJT. (BL-2)MODULE-5POWER AMPLIFIERS & TUNED AMPLIFIERSPower Amplifiers: Classification, Class A Power Amplifier, Distortion, Second harClass B Amplifier, Push- pull amplifier, Complementary Symmetry Class AB AAmplifier, Thermal stability and Heat sink.Tuned Amplifiers: Tuned Circuit, Q-Factor, Single tuned capacitive coupled amCascading Single tuned amplifiers on Band width, Stability.At the end of the Module 5, students will be able to:	9 Hrs monic Distortion, mplifier, Class C plifier, Effect of							
follower , Darlington pair amplifier, Differential amplifier using BJT. At the end of the Module 4, students will be able to: 1. Explain the concept of cascading and coupling schemes(BL-2) 2. Analyze two stage RC coupled amplifier (BL-4) 3. Summarize the darlington amplifier parameters.(BL-2) 1. Explain differential amplifier with BJT. (BL-2) MODULE-5 POWER AMPLIFIERS & TUNED AMPLIFIERS Power Amplifiers: Classification, Class A Power Amplifier, Distortion, Second harded Class B Amplifier, Push- pull amplifier, Complementary Symmetry Class AB A Amplifier, Thermal stability and Heat sink. Tuned Amplifiers: Tuned Circuit, Q-Factor, Single tuned capacitive coupled am Cascading Single tuned amplifiers on Band width, Stability. At the end of the Module 5, students will be able to: 1. List types of power amplifiers & compare the voltage and power amplifier	9 Hrs monic Distortion, mplifier, Class C plifier, Effect of							
follower , Darlington pair amplifier, Differential amplifier using BJT. At the end of the Module 4, students will be able to: 1. Explain the concept of cascading and coupling schemes(BL-2) 2. Analyze two stage RC coupled amplifier (BL-4) 3. Summarize the darlington amplifier parameters.(BL-2) 1. Explain differential amplifier with BJT. (BL-2) MODULE-5 POWER AMPLIFIERS & TUNED AMPLIFIERS Power Amplifiers: Classification, Class A Power Amplifier, Distortion, Second har Class B Amplifier, Push- pull amplifier, Complementary Symmetry Class AB A Amplifier, Thermal stability and Heat sink. Tuned Amplifiers: Tuned Circuit, Q-Factor, Single tuned capacitive coupled am Cascading Single tuned amplifiers on Band width, Stability. At the end of the Module 5, students will be able to: 1. List types of power amplifiers & compare the voltage and power amplifier 2. Discuss heat sinks, thermal stability and distortions.(BL-1)	9 Hrs monic Distortion, mplifier, Class C plifier, Effect of							
follower , Darlington pair amplifier, Differential amplifier using BJT.At the end of the Module 4, students will be able to:1. Explain the concept of cascading and coupling schemes(BL-2)2. Analyze two stage RC coupled amplifier (BL-4)3. Summarize the darlington amplifier parameters.(BL-2)1. Explain differential amplifier with BJT. (BL-2)MODULE-5POWER AMPLIFIERS & TUNED AMPLIFIERSPower Amplifiers: Classification, Class A Power Amplifier, Distortion, Second harClass B Amplifier, Push- pull amplifier, Complementary Symmetry Class AB AAmplifier, Thermal stability and Heat sink.Tuned Amplifiers: Tuned Circuit, Q-Factor, Single tuned capacitive coupled amCascading Single tuned amplifiers on Band width, Stability.At the end of the Module 5, students will be able to:1. List types of power amplifiers & compare the voltage and power amplifier2. Discuss heat sinks, thermal stability and distortions.(BL-1)3. Explain the concept of tuned circuits. (BL-02)	9 Hrs monic Distortion, mplifier, Class C plifier, Effect of							
follower , Darlington pair amplifier, Differential amplifier using BJT. At the end of the Module 4, students will be able to: 1. Explain the concept of cascading and coupling schemes(BL-2) 2. Analyze two stage RC coupled amplifier (BL-4) 3. Summarize the darlington amplifier parameters.(BL-2) 1. Explain differential amplifier with BJT. (BL-2) MODULE-5 POWER AMPLIFIERS & TUNED AMPLIFIERS Power Amplifiers: Classification, Class A Power Amplifier, Distortion, Second har Class B Amplifier, Push- pull amplifier, Complementary Symmetry Class AB A Amplifier, Thermal stability and Heat sink. Tuned Amplifiers: Tuned Circuit, Q-Factor, Single tuned capacitive coupled am Cascading Single tuned amplifiers on Band width, Stability. At the end of the Module 5, students will be able to: 1. List types of power amplifiers & compare the voltage and power amplifier 2. Discuss heat sinks, thermal stability and distortions.(BL-1) 3. Explain the concept of tuned circuits. (BL-02) 4. Compare different tuned amplifiers. (BL-02)	9 Hrs monic Distortion, mplifier, Class C mplifier, Effect of c.(BL-2)							
follower , Darlington pair amplifier, Differential amplifier using BJT. At the end of the Module 4, students will be able to: 1. Explain the concept of cascading and coupling schemes(BL-2) 2. Analyze two stage RC coupled amplifier (BL-4) 3. Summarize the darlington amplifier parameters.(BL-2) 1. Explain differential amplifier with BJT. (BL-2) MODULE-5 POWER AMPLIFIERS & TUNED AMPLIFIERS Power Amplifiers: Classification, Class A Power Amplifier, Distortion, Second harded Class B Amplifier, Push- pull amplifier, Complementary Symmetry Class AB A Amplifier, Thermal stability and Heat sink. Tuned Amplifiers: Tuned Circuit, Q-Factor, Single tuned capacitive coupled amc Cascading Single tuned amplifiers on Band width, Stability. At the end of the Module 5, students will be able to: 1. List types of power amplifiers & compare the voltage and power amplifier 2. Discuss heat sinks, thermal stability and distortions.(BL-1) 3. Explain the concept of tuned circuits. (BL-02) 4. Compare different tuned amplifiers. (BL-02) 5. Derive the expression for gain and bandwidth of a single tuned amplifier. (Distortion for gain and bandwidth of a single tuned amplifier. (Distortion for gain and bandwidth of a single tuned amplifier. (Distortion for gain and bandwidth of a single tuned amplifier. (Distortion for gain and bandwidth of a single tuned amplifier. (Distortion for gain and bandwidth of a single tuned amplifier. (Distortion for gain and bandwidth of a single tuned amplifier. (Distortion for gain and bandwidth of a	9 Hrs monic Distortion, mplifier, Class C mplifier, Effect of c.(BL-2)							
follower , Darlington pair amplifier, Differential amplifier using BJT. At the end of the Module 4, students will be able to: 1. Explain the concept of cascading and coupling schemes(BL-2) 2. Analyze two stage RC coupled amplifier (BL-4) 3. Summarize the darlington amplifier parameters.(BL-2) 1. Explain differential amplifier with BJT. (BL-2) MODULE-5 POWER AMPLIFIERS & TUNED AMPLIFIERS Power Amplifiers: Classification, Class A Power Amplifier, Distortion, Second har Class B Amplifier, Push- pull amplifier, Complementary Symmetry Class AB A Amplifier, Thermal stability and Heat sink. Tuned Amplifiers: Tuned Circuit, Q-Factor, Single tuned capacitive coupled am Cascading Single tuned amplifiers on Band width, Stability. At the end of the Module 5, students will be able to: 1. List types of power amplifiers & compare the voltage and power amplifier 2. Discuss heat sinks, thermal stability and distortions.(BL-1) 3. Explain the concept of tuned circuits. (BL-02) 4. Compare different tuned amplifiers. (BL-02)	9 Hrs monic Distortion, mplifier, Class C mplifier, Effect of c.(BL-2)							

Content beyond syllabus:

1. Power amplifiers using MOSFET-efficiency of MOSFET power amplifier.

2. Cascsed amplifier using FET-small signal analysis of cascade amplifier using FET.

Self-Study:

Contents to promote self-Learning:

SN	Module	Reference
0		
1	Small Signal Low Frequency & High Frequency Analysis	https://www.tutorialspoint.com/amplifiers/amplifiers_classification.htmhttps://www.tutorialspoint.com/amplifiers/amplifiers_classification.htm
2	Feedback Amplifiers	https://www.tutorialspoint.com/amplifiers/amplifiers_feedb ack.htm
3	Oscillators	https://www.tutorialspoint.com/sinusoidal_oscillators/sinus oidal_oscillators_introduction.htm
4	Multistage Amplifiers	https://www.tutorialspoint.com/amplifiers/multi_stage_tran sistor_amplifier.htm
5	Power Amplifiers & Tuned Amplifiers	https://www.tutorialspoint.com/amplifiers/classification_of power_amplifiers.htm https://www.tutorialspoint.com/amplifiers/tuned_amplifiers .htm

Text Book(s):

- 1. J. Millman and C.C. Halkias, "Integrated Electronics", McGraw-Hill, 1972.
- 2. Donald A. Neaman, "Electronic Circuit Analysis and Design", McGraw Hill.
- 3. Electronic Circuit Analysis 4th Edition by K. Lal Kishore, BS Publications.

Reference Book(s):

- 1. Robert T. Paynter, "Introductory Electronic Devices and Circuits", Pearson Education, 7th Edition
- 2. Robert L. Boylestad and Louis Nashelsky, "Electronic Devices and Circuits Theory" Pearson/Prentice Hall, 9th Edition, 2006.
- 3. Sedra A.S. and K.C. Smith, "Micro Electronic Circuits", Oxford University Press, 5th Edition.
- 4. Salivahanan, N.Suressh Kumar, A. Vallavaraj, "Electronic Devices and Circuits", Tata McGraw Hill, Second Edition

Online Resources/ Web references:

1.<u>https://www.academia.edu/28016003/EDC_by_Lal_kishore</u>

- 2.<u>https://www.academia.edu/9984476/Electronic_devices_and_circuit_theory_robert_boylestad_1_</u>
- 3. Donald A. Neaman, "Electronic Circuit Analysis and Design", McGraw Hill.
- 4. https://nptel.ac.in/courses/122/106/122106025/

5. <u>https://www.tutorialspoint.com/semiconductor_devices/index.htm</u>

- 6. https://www.allaboutcircuits.com/textbook/semiconductors/
- 7. http://www.satishkashyap.com/

		NARAYA		GINEERIN	IG COLLE	GE:NELL	ORE	
20EC2004				CON	ITROL SYS	TEMS		R20
Semester	Н	lours / Wee	k	Total	Credit		Max Ma	arks
	L	Т	Р	hrs	С	CIE	SEE	TOTAL
IV	2	0	0	32	2	40	60	100
Pre-requisi	te: Basics	concepts c	of Electrica	l Circuits &	Basics of L	aplace tran	sform	
Course Obj	jectives:							
1.	To under	stand the r	nerits and	l demerits	of open an	d closed lo	oop control	systems
2.	To under	stand the s	tep respo	nse of seco	ond order o	control sys	tems	
3.	To plot R	oot locus fo	or the give	en system t	transfer fu	nction		
4.	To under	stand the s	tability ar	nalysis fron	n Bode plo [.]	t, polar plo	ots	
5.	To under	stand the r	nerits of a	state space	e analysis o	ver time d	omain ana	lysis
Course Out	tcomes : Af	ter success	ful comp	letion of tl	ne course,	the studer	nt will be ab	ole to:
CO 1			•				Il systems a flow graphs	nd obtain the s (BL - 3)
CO 2		the time do of first and s	•			errors and	l to learn tir	ne response
CO 3	Summarize the concepts Routh's stability and Root locus to find the stability of the system (BL - 2)							
CO 4	CO 4 Summarize the frequency domain specifications from Bode, Polar, Nyquist plots and evaluate the frequency domain specifications(BL - 2)							
CO 5		ze the conce e transfer fu	•	•	alysis, contr	ollability a	nd Observa	bility and to

					(CO-PO	Марр	oing							
СО		РО												PSO	
	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	PSO	PSO	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	
CO1	2	2	3											3	
CO2	3	3	1											3	
CO3	1	2	2										3		
CO4	1	1	3	1										3	
CO5	1	3	3											3	
	1				1- Lo	w, 2-N	ledium	n, 3- Hi	gh					1	

	COURSE CONTENT	
MODULE – 1	INTRODUCTION TO CONTROL SYSTEMS	8 hrs

Examples & Classification of control systems, merits and demerits of Open Loop and closed loop control systems, Effects of positive and negative feedback

Mathematical modelling and transfer function of Electrical and Mechanical systems, Analogous systems. Control System Components: DC Servo motor, AC Servo motor, Synchro Transmitter & Receiver (2h) Block diagrams: Block diagram representation of control systems, Block Diagram Reduction Rules .(4h)

Signal flow graph: Definitions, Reduction using Mason's gain formula.(3h)

At the end of the Module 1, students will be able to:

1.Identify the difference between open loop and closed loop systems (BL=3)

2.Understand the effect of feedback on system performance (BL=2)

3. Apply the block diagram reduction to simplify the given system (BL=3)

MODULE-2 TIME RESPONCE ANALYSIS

7 hrs

6 hrs

Standard test signals, Time response of first order and second order un damped, under damped, critically damped and over damped systems, Time domain specifications. (6h) **Error Analysis:** Steady state Error, static error coefficient of type 0,1, 2 systems (3h)

At the end of the Module 3, students will be able to:

- 1. Understand the importance of basic test signals . (BL=2)
- 2. Understand the Time response of second order system with different dampings . (BL=2)
- 3. Find steady state error for the given system for any input signal. . (BL=1)

	, 0	'	, ,	0	•
MODULE-3		STABILIT	Y ANALYSIS		

Stability: The concept of stability, Routh's stability criterion, limitations of Routh's stability.(4h) **Root locus plot**: The root locus concept, construction of root loci, effects of adding poles and zeros to G(s)H(s) on the root loci. (5h)

At the end of the Module 4, students will be able to:

- 1. Understand various stability issues (BL=2)
- 2. Apply Routh's stability criteria to given system for stability assessment (BL=3)
- 3. construct the Root locus plot for the given system (BL=3)

MODULE-4	FREQUENCY RESPONSE ANALYSIS	6 hrs					
Introduction, Freq	troduction, Frequency domain specifications, Bode plot, polar plot, Transfer function from the Bode						
Diagram, Stability	Analysis from Bode Plots. Polar Plots, Nyquist Plots. (8h)						

Compensation Techniques: Lag, Lead, Lag-Lead Compensators.(3h)

At the end of the Module 5, students will be able to:

- 1. Understand various frequency domain specifications. (BL=2)
- 2. Explain the Bode plot for the given system. (BL=2)
- 3. Find the stability of given system from Bode plot and polar plot. (BL=1)

MODULE-5

STATE SPACE ANLYSIS

5 hrs

Introduction: Concepts of state, state variables and state model, derivation of state models from differential equations, Diagonalization. (5h)

Solution of state equation: Solving the Time invariant state Equations, State Transition Matrix and it's Properties. (2h)

The concepts of controllability and observability. (2h)

At the end of the Module 6, students will be able to:

- 1. Understand the importance of state space analysis (BL=2)
- 2. Find the state model for the given transfer function through various techniques. (BL=1)
- 3. Examine the controllability and observability of the given state model. (BL=1)

Total hours: 32 hours

Content beyond syllabus:

- **1.** Introduction to P, PI and PID controllers.
- 2. State space representation of Armature and Field controlled DC motor.

Self-Study:

Contents to promote self-Learning:

SNO	Торіс	СО	Reference
1	Open Loop and closed	CO1	https://nptel.ac.in/courses/107/106/107106081/
	loop control systems		
2	Time response of	CO2	https://www.tutorialspoint.com/control_systems/control
	second order system		systems_time_response_analysis.htm
3	Routh's stability	CO3	https://nptel.ac.in/courses/107/106/107106081/
	criteria		
4	Frequency domain	CO4	https://www.tutorialspoint.com/control systems/control
	specifications		systems_frequency_response_analysis.htm
5	Controllability and	CO5	https://www.tutorialspoint.com/control_systems/control
	observability		systems state space analysis.htm

Text Book(s):

1."Control Systems Engineering, I. J. Nagrath and M. Gopal, New Age International Publishers,

5th edition, 2007, Reprint 2012.

2. Control Systems by <u>A. Anand Kumar</u>, PHI Learning pvt. Ltd., second edition

Reference Book(s):

1. Norman S. Nise, "Control Systems Engineering", John Wiley & Sons PTE Ltd, 2013

2. Modern Control Engineering, Katsuhiko Ogata, PEARSON, 1st Impression 2015.

3. Automatic Control Systems, Farid Golnaraghi and Benjamin. C. Kuo, WILEY, 9th Edition, 2010.

4. N C Jagan, "Control Systems", BS Publications, 1st Edition, 2007.

5. S Palani, "Control Systems Engineering", Tata McGraw-Hill Publications, 1st Edition, 2001.

6. N K Sinha, "Control Systems", New Age International Publishers, 1st Edition, 2002.

Online Resources/ Web References:

1. http://www.ent.mrt.ac.lk/~rohan/teaching/EN5001/Reading/DORFCH1.pdf

2.<u>https://drive.google.com/file/d/0B0CHtxo5u4TNWIdoYXVnS3MxV0k/view</u>

3.<u>http://www.aoengr.com/SampleBook.pdf</u>

4. https://www.accessengineeringlibrary.com/content/book/9781259643835

5.<u>http://175.101.102.82/moodle/</u>

6. <u>https://nptel.ac.in/courses/107/106/107106081/</u>

7. <u>https://www.youtube.com/watch?v=XYbrgwKP_6k</u>

8. https://drive.google.com/file/d/0B2D2VI5_6vK1WUx5T29kME1xelk/view

9. <u>https://www.youtube.com/watch?v=sUDoTw_Llbk</u>

	NARAYANA ENGINEERING COLLEGE :: NELLORE										
20EC2005	ELECT	ROMAG	NETIC TH	EORY AN	ID TRANS	MISSION	LINES	R20			
Semester	Hours / Week			Total	Credit		·ks				
	L	Т	Р	hrs	С	CIE	SEE	TOTAL			
IV	3	0	0	48	3	40	60	100			
	Pre-requisite: Vector Calculus, Knowledge of Integration and differentiation.										
Course Ob	-										
1. To	study diff	erent coor	dinate sys	tems, Phy	sical signi	ficance of	Divergen	ce, Curl and			
Gra	dient.										
2. To	acquire k	nowledge	on electri	c and ma	gnetic fiel	ds in bot	h static a	nd dynamic			
don	nains.										
3. To	understand	wave con	cept with the	he help of	Maxwell's	equations.					
4. To	Analyze r	eflection a	nd refractio	n of EM w	aves and E	lectromagn	netic wave	propagation			
	ifferent me					U		1 1 0			
5. To	introduce c	oncepts of	polarization	n and funda	mental the	orv of elect	romagnetic	waves			
			their practic								
Course Ou						he student	will able to	.			
			s law and Ga								
CO 1	Арріу ше	Coulomb			unterent ci	laige uistii	butions.(Di				
CO 2	Make use	of Biot-Sa	vart Law, A	mpere's Ci	rcuit law to	static curre	ent distribu	tions.(BL-3)			
CO 3	CO 3 Analyze the electric and magnetic fields.(BL-4)										
CO 4	CO 4 Interpret the characteristics of EM Wave.(BL-2)										
CO 5	Illustrate	the concep	ts of transn	nission line	s.(BL-2)						

	CO-PO Mapping													
		PO								PS	50			
CO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	2		2									1	
CO2	3	3		2									1	
CO3	3	2	2										2	
CO4	3	1	1										2	2
CO5	3	2	2										2	2
					1- Lo	w, 2-M	ledium	i, 3- Hi	igh					

	COURSE CONTENT									
MODULE – 1	MODULE – 1 Electrostatics 13 Hrs									
Coulomb's Law, E	Coulomb's Law, Electric Field Intensity - Fields due to Different Charge Distributions, Electric Flux									
Density, Gauss Lav	w and Applications, Electric Potential, Relations Between	E and V, Maxwell's Two								
Equations for Elect	rostatic Fields, Electric dipole, Energy Density, Convection	n and Conduction Currents,								
Dielectric Constant	t, Isotropic and Homogeneous Dielectrics, Continuity E	quation, Relaxation Time,								
Poisson's and Laplace's Equations, Capacitance – Parallel Plate, Coaxial, Spherical Capacitors,										
Illustrative Problem	IS.									

At the end of the Module 1, students will be able to:

- 1. Summarize basic laws of static electric field. (BL-2)
- 2. Derive the Maxwell's equations for electrostatic fields. (BL-3)
- 3. Solve problems applying laws of electrostatics. (BL-3)
- 5. Explain electric energy and potential (BL-2)
- 6. Define currents of conductors and dielectrics (BL-1)
- 7. Illustrate Poisson's and Laplace's Equations (BL-2)
- 8. Summarize types of capacitors (BL-2)

MODULE -2	Magneto statics	9 Hrs

Biot-Savart's Law, Ampere's Circuital Law and Applications, Magnetic Flux Density, Maxwell's Two Equations for Magneto static Fields, Magnetic Scalar and Vector Potentials, Forces due to Magnetic Fields, Magnetic torque and moment, Magnetic dipole, Inductances and Magnetic Energy, Illustrative Problems.

At the end of the Module 2, students will be able to:

- 1. Summarize basic laws of static magnetic field. (BL-2)
- 2. Derive the Maxwell's equations for magnetic fields. (BL-3)
- 3. Solve problems applying laws of magneto statics. (BL-3)

MODULE-3	Maxwell's Equations for Time Varying Fields	6 Hrs
----------	---	-------

Faraday's Law and Transformer e.m.f, Inconsistency of Ampere's Law and Displacement Current Density, Maxwell's Equations in Different Forms and Word Statements. Boundary Conditions of Electromagnetic fields: Dielectric-Dielectric and Dielectric-Conductor Interfaces, Illustrative Problems.

At the end of the Module 3, students will be able to:

- 1. Derive Maxwell's equations for time varying electromagnetic fields. (BL-3)
- 2. Apply the boundary conditions of EM fields at the interface of different media.(BL-3)
- 3. Solve problems on time varying maxwell's equations of electromagnetic fields. (BL-3)

MODULE-4	EM Wave Characteristics	12 Hrs

Wave Equations ,Uniform Plane Waves – Definition, All Relations between E & H, Sinusoidal Variations, Wave Propagation in Lossless and Conducting Media, Conductors & Dielectrics – Characterization, Wave Propagation, Polarization, Reflection and Refraction of Plane Waves – Normal and Oblique Incidences, for both Perfect Conductor and Perfect Dielectrics, Brewster Angle, Surface Impedance, Poynting Vector, and Poynting Theorem – Applications, Power Loss in a Plane Conductor, Illustrative Problems.

At the end of the Module 4, students will be able to:

- 1. Derive wave equations for different media. (BL-3)
- 2. Explain concept of polarization of electromagnetic waves. (BL-2)
- 3. Solve problems using wave characteristics equations (BL-3)
- 4. Explain principles of reflections and refraction for different incidences. (BL-2)
- 5. Explain concept of power flow using Pointing vector. (BL-2)
- 6. Solve problems on Brewster angle, power flow and surface impedance. (BL-3)

MODULE-5	Transmission Lines	8 Hrs
Introduction, Transm	ission line parameters (Primary and Secondary), T	Transmission line equations, Input
impedance, Standing	wave ratio & power, Smith chart & its application	ons, Applications of transmission
lines of various length	ns, Micro-strip transmission lines – input impedance	ce. Illustrative Problems.

At the end of the Module 6, students will be able to:

- 1.Study the principles of transmission lines and concept of smith chart.(BL-2)
- 2.Derive the input impedance of transmission line.(BL-3)
- 3. Calculate the line parameters through problem solving.(BL-3)
- 4.Study the applications of different lengths of transmission lines.(BL-2)

Total Hours: 48 Hours

Content beyond syllabus:

- 1. Guided Waves: Propagation of TE waves between parallel planes.
- 2. Propagation of TM waves between parallel planes.
- 3. Propagation of TEM waves between parallel planes.
- 4. Propagation of TEM waves between parallel planes.

Self-Study:

Contents to promote self-Learning:

S.NO	Module	Reference
		https://lecturenotes.in/subject/77/electromagnetic-theory-emt
		https://gradeup.co/electronics-
1		communication/electromagnetic-theory
1	Electrostatics	https://lecturenotes.in/subject/77/electromagnetic-theory-emt
		https://gradeup.co/electronics-
		communication/electromagnetic-theory
		https://lecturenotes.in/subject/77/electromagnetic-theory-emt
2	Magnetostatics	https://gradeup.co/electronics-
-	Mugnetostures	communication/electromagnetic-theory
	Maxwell's	https://lecturenotes.in/subject/77/electromagnetic-theory-emt
_	Equations for	https://gradeup.co/electronics-
3	Time-varying	communication/electromagnetic-theory
	fields	
		https://lecturenotes.in/subject/77/electromagnetic-theory-emt
		https://gradeup.co/electronics-
	EM Wave	communication/electromagnetic-theory
4	Characteristics	https://lecturenotes.in/subject/77/electromagnetic-theory-emt
		https://gradeup.co/electronics-
		communication/electromagnetic-theory
	Tuonamianior	https://youtu.be/b_VCIdXEK2I
5	Transmission	https://youtu.be/OAL1AnOif2c
-	Lines	https://youtu.be/-LS8ghXTN9M

Text Book(s):

 Matthew N.O. Sadiku, S.V.Kulkami, "Elements of Electromagnetics", Oxford Univ. Press, 6th ed., 2015.

2. William H. Hayt Jr. and John A. Buck, "Engineering Electromagnetics", TMH, 7th ed., 2006.

Reference Book(s):

1. E.C. Jordan and K.G. Balmain, "Electromagnetic Waves and Radiating Systems", 2nd Edition, PHI, 2000

2. John D. Krauss, "Electromagnetics", 4th Edition, McGraw- Hill publication1999.

Online Resources/ Web References:

1. https://nptel.ac.in/courses/108/104/108104087/

2. https://nptel.ac.in/courses/115/101/115101005/

3. <u>http://nptel.ac.in/courses/117101056/</u>

- 4. <u>www.nptelvideos.in/2012/12/transmission-lines-and-em-waves.html</u>
- 5. <u>https://www.khanacademy.org/</u>
- 6. <u>https://www.tutorialspoint.com/electromagnetics_theory/index.asp</u>
- 7. https://swayam.gov.in/nd1_noc19_ph08/preview
- 8. http://www.a-zshiksha.com/forum/viewtopic.php?f=147&t=61578
- 9. https://freevideolectures.com/course/3288/electromagnetic-theory/7
- 10. https://www.youtube.com/watch?v=pGdr9WLto4A

11. <u>https://youtu.be/6Nj2oqayIYc</u> (Polarization)

- 12. <u>https://youtu.be/-Kw-vy68CEA</u> (Oblique incidence of plane waves)
- 13. <u>https://youtu.be/fh2MLGVtb0U</u> (Power Loss in a Plane Conductor)
- 14. https://www.tcyonline.com/tests/electromagnetic-theory
- 15.<u>https://ocw.mit.edu/courses/physics/8-03sc-physics-iii-vibrations-and-waves-fall-2016/part-ii-electromagnetic-waves/lecture-12/</u>
- 16. www.dannex.se/theory/1.html
- 17.<u>www.tandfonline.com/toc/uemg20/current</u>
- 18. https://youtu.be/qsXGBjXf8GA

	NA	RAYANA	ENGINI	EERING	COLLEGI	E: NELLO	RE			
20EC2006			ILITY A	ND RAN	DOM PRO	OCESS		R20		
Semester	Hou	irs / Week		Total	Credit		Max Ma			
	L	Т	Р	hrs	C	CIE	SEE	TOTAL		
IV	3	0	0	48	3	40	60	100		
Pre-requis										
• Set	theory									
• Inte	grations, differ	entiations,	partial dif	ferentiatio	ns formula	S				
• Ter	ms involved in	Electronic	s & Comn	nunication	S					
Course Ob	jectives:									
1. To	understand the	basic prob	ability con	cepts and	to find the	probability				
2. To	acquire skills in	n handling	situations	involving	more than	one randoi	n variable a	nd functions of		
ran	dom variables.	-		-						
3. To	analyze the co	ncept of s	atistical a	verages.						
4. To	understand type	es of rando	m process	es, Auto-c	orrelation,	Cross Corr	elation and	power spectral		
	sity and cross p		•							
5. To	understand the	principles	of random	process re	elate to sys	tem conce	ots			
Course Ou	tcomes: After	successfu	l complet	ion of the	course, the	e student w	vill be able	to:		
CO 1	Interpret the c	concepts o	f sample s	paces and	set theory	to calculat	te probabili [.]	ties (BL-2)		
<u> </u>						1 1	1 10 . 11	c		
CO 2		•				density an	d distributio	on functions to		
	compute prob	abilities fo	r complex	problems	. (BL-3)					
CO 3	Compute the s	statistical	verages fo	or multiple	random va	ariables usi	ing joint pro	bability		
000	density and di		-	•						
	•									
CO 4	Interpret the o	concept of	Power Spe	ectrum De	nsity & Cro	ss Power S	pectrum de	nsity related		
	to temporal ch	naracterist	ics and spe	ectral char	acteristics	(BL-4)				
CO 5	Apply the prin	ciples of a	random p	rocess for	solving sys	tem relate	d problems.	. (BL-3)		

						CO-P	O Ma	pping							
	РО													PSO	
CO	РО 1	PO 2	РО 3	РО 4	РО 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO1	PSO 2	
CO1	3	2	2												
CO2	2	2	2												
CO3	2	3	2	3											
CO4	3	3	3	3									2		
CO5	3	2	2	3									2		
					1: L	ow, 2-1	Mediu	m, 3- I	High						

		COURSE CONTENT	
MOD	ULE – 1	PROBABILITY	9 Hrs
	•	luced through Sets and Relative Frequency; Probability space& Axioms; M	
Model	of Experin	nents, Joint probability, Conditional probability, Total probability and Baye's th	leorem
At the e		Module 1, students will be able to:	
1.		nd the fundamental concepts of probability (BL-2)	
2.	-	probability for real time examples (BL-1)	
3.		probability (BL-1)	
4.	Apply Ba	aye's theorem for different real time applications (BL-3) DISCRETE& CONTINUOUS RANDOM VARIABLES	9 Hrs
		function, probability distribution function, example random variables and d	
	•	ions; Joint distributions, functions of one and two random variables, moments	
	•	ional distribution, densities and moments; Characteristic functions of a random	
	-	rem (without+ proof)	i vunuoies,
At the e	end of the	Module 2, students will be able to:	
1.		nd probability distribution and density functions (BL-2)	
2.	Outline th	ne importance of the central limit theorem (BL-2)	
3.	Solve the	moments to the sum of random variables (BL-3)	
4.	Apply dif	ferent probability distribution and density functions on random variables.(BL-	3)
MOI	DULE-3	OPERATIONS ON MULTIPLE RANDOM VARIABLES	9 Hrs
-		f a function of random variables, joint moments about the origin, joint centra of Multiple Random Variables, Linear Transformations of Gaussian Random	
Markov	v, Chebysh	ev and Chernoff bounds.	
At the e	end of the	Module 3, students will be able to:	
1.	Understan	nd the moments for multiple random variables. (BL-2)	
2.	Understan	nd the concepts of linear transformation of Gaussian random variables. (BL-2)	
3.	Apply the	e different operations to multiple random variables. (BL-3)	
		RANDOM PROCESSES: TEMPORAL CHARACTERISTICS &	
MOI	DULE-4	SPECTRAL CHARACTERISTICS	12 Hrs
	-	ess concept, classification of processes, concept of stationary and statistical ind	lependence.
Correla	tion functi	on.	
Power	spectrum I	Properties, Relationship between power spectrum and autocorrelation function	, properties
of pow	er spectral	density, relation between cross - power density spectrum and cross correlation	, properties
of cross	s power sp	ectral density; problems.	
At the e	end of the	Module 4, students will be able to:	
1.	Define co	ontinuous and discrete-time random processes. (BL-1)	
2.	Explain v	various Stationary Processes. (BL-2)	
3.	Apply the	e concepts and its properties of auto correlation. (BL-3)	
4.	Apply the	e concepts and its properties cross correlation functions. (BL-3)	
5.		nd the concepts of power spectral density & cross power spectral density (BL-2	.)
6.		D & CPSD properties on random process. (BL-3)	
7.		SD properties on random process. (BL-3)	
MOI	DULE-5	RANDOM SIGNAL RESPONSE OF LINEAR SYSTEMS	9 Hrs

System Response – Convolution, Mean and Mean squared Value of System Response, autocorrelation Function of Response, Cross Correlation Functions of Input and Output, Spectral Characteristics of System Response: Power Density Spectrum of Response, Cross-Power Density Spectrums of Input and Output, Band pass, Band Limited and Narrowband Processes, Properties.

Noise Definitions: White Noise, Ideal low passfiltered white noise, RC filtered white noise.

At the end of the Module 6, students will be able to:

- 1. Relate the theory of stochastic processes to analyze linear systems. (BL-2)
- 2. Understand the concepts of low pass and band pass noise models for random processes. (BL-2)
- 3. Apply the statistical characteristics to response of linear systems. (BL-3)
- 4. Analyse the output characteristics of a system when input is an WSS process. (BL-4)

Total hours:48 Hours

Content beyond syllabus:

- 1. Discrete time markov process
- 2. Continuous time markov process

Self-Study:

SNO	Module	Reference
1	PROBABILITY	https://byjus.com/maths/probability/
		https://www.britannica.com/science/probability-theory
2	Discrete&	http://www.nptelvideos.com/lecture.php?id=10402
	Continuous Random	
	Variables	
3	Operations on	https://onlinelibrary.wiley.com/doi/pdf/10.1002/9780470171455.a
	multiple random	<u>pp1</u>
	variables	https://www.researchgate.net/publication/229766295_Autocorrela
		tion_and_Cross-Correlation_Methods
4	Random Processes:	https://www.sciencedirect.com/topics/engineering/stationary-
	Temporal	random-process
	Characteristics	https://www.cygres.com/OcnPageE/Glosry/SpecE.html
	Random Processes –	https://faculty.washington.edu/dbp/PDFFILES/GHS-AP-Stat-
	Spectral	talk.pdf
	Characteristics	
6	Random Signal	https://www.projectrhea.org/rhea/index.php/ECE600_F13_Linear
	Response of Linear	_Systems_with_Random_Inputs_mhossain
	Systems	https://faculty.kfupm.edu.sa/ee/muqaibel/Courses/E570%20Stoch
		astic%20Processes/notes/RP/Linear%20Systems%20with%20Ran
		dom%20Inputs.pdf

Reference Book(s):

- 1. R.P. Singh and S.D. Sapre, "Communication Systems Analog & Digital", TMH, 1995.
- 2. Henry Stark and John W. Woods, "Probability and Random Processes with Application toSignal Processing", Pearson Education, 3rd Edition.
- 3. George R. Cooper, Clave D. MC Gillem, "Probability Methods of Signal and System Analysis", Oxford, 3rd Edition, 1999.
- 4. S.P. Eugene Xavier, "Statistical Theory of Communication", New Age Publications, 2003.
- 5. B.P. Lathi, "Signals, Systems & Communications", B.S. Publications, 2003
- 6. keiser, gerd, "probability theory and stochastic processes", TMH publications, 4th Edition.

Online Resources/ Web References:

MODULE-1

- 1. http://www.nptelvideos.com/lecture.php?id=10375
- 2. http://www.nptelvideos.com/lecture.php?id=10376
- 3. <u>http://www.nptelvideos.com/lecture.php?id=10378</u>
- 4. <u>http://www.nptelvideos.com/lecture.php?id=10379</u>

MODULE-2 &3

- 1. http://www.nptelvideos.com/lecture.php?id=10386
- 2. <u>http://www.nptelvideos.com/lecture.php?id=10387</u>
- 3. <u>http://www.nptelvideos.com/lecture.php?id=10388</u>
- 4. <u>http://www.nptelvideos.com/lecture.php?id=10389</u>
- 5. http://www.nptelvideos.com/lecture.php?id=10390
- 6. http://www.nptelvideos.com/lecture.php?id=10402

MODULE-4

- 1. <u>http://www.nptelvideos.com/lecture.php?id=10403</u>
- 2. http://www.nptelvideos.com/lecture.php?id=10404
- 3. http://www.nptelvideos.com/lecture.php?id=10407
- 4. http://www.nptelvideos.com/lecture.php?id=10408

MODULE-5

- 1. <u>http://www.nptelvideos.com/lecture.php?id=10406</u>
- 1. <u>https://www.tutorialspoint.com/probability/index.asp</u>
- 2. https://byjus.com/maths/bayes-theorem/
- 3. <u>https://www.tutorialspoint.com/statistics/binomial_distribution.htm</u>
- 4. https://web.sonoma.edu/esee/courses/es442/supp/correlation_applications.pdf
- 5. <u>https://www.jospt.org/doi/pdf/10.2519/jospt.2009.2969</u>

20502007	NAKA				OLLEGE	: NELLO	JKE	D 20
20EC2007		/ ***	-	s and Sys				R20
Semester		irs / Wee	1	Total	Credit	Max M		
	L	Т	Р	hrs	С	CIE	SEE	TOTAL
IV	3	0	0	48	3	40	60	100
Pre-requisi								
	wledge on Inte	egration, D	ifferentiati	ions and T	ransforms			
Course Ob	jectives:							
 Το ι 	inderstand the	mathemat	ical descri	ption and 1	epresentati	on of cont	inuous and	discrete-time
sign	als and system	ns.						
• To s	tudy the frequ	ency repre	esentation	of periodic	signals.			
• To c	haracterize sig	gnals and s	systems us	ing frequer	ncy domain	methods.		
• To :	study samplin	g theorem	and to c	onvert con	tinuous-tim	e signals	to discrete	e-time signal
with	different tech	niques and	l vice-vers	a.		-		-
• To a	analyze contin	uous and	discrete-ti	me signals	and system	ns using L	Laplace &	Z- Transforn
	nematical tool.			C	•	e		
Course Ou	tcomes: After	successfu	al complet	ion of the	course, the	student v	vill be able	e to:
CO 1	Interpret th		-					
CO 2	Interpret th	e concept	of Fourier	series for	Continuous	time sign	als.(BL-2)	
CO 3	Apply contin	nuous time	Fourier T	ransform f	or Continue	ous time s	ignals .(BL-	3)
CO 4	Apply Sampl	ling Theore	em for Cor	ntinuous tii	me signals.(BL-3)		
CO 5	Analyze Lap							

	CO-PO Mapping													
			PSO											
СО	РО	PO	PO	PO	PO	PO	РО	РО	РО	РО	РО	РО	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	2	2										1	
CO2	3	3	3	2									3	2
CO3	3	3	2	2									2	1
CO4	3	2	3										2	
CO5	2	3	3	1									2	2
	•				1: Lo	w, 2-M	ledium	n, 3- H	igh			•		

	COURSE CONTENT	
MODULE – 1	INTRODUCTION TO SIGNALS AND SYSTEMS	9 Hrs
Classification of Invariant System	D SYSTEMS: Basic definitions and classification of Signals, Basic operat f Continuous-Time and Discrete-Time Systems, Basic System Properties ms - Discrete-Time LTI Systems, Convolution Sum, Continuous-Time egral, Properties of Linear Time-Invariant Systems.	s, Linear Time-
	e Module 1, students will be able to:	
1. Underst	and classifications of the signals and systems. (BL-2)	
▲	continuous and discrete time signals. (BL-2)	
3. Underst. MODULE -2	and the concept of convolution. (BL-2) FOURIER SERIES	8 Hrs
	of Fourier series, Continuous time periodic signals, Dirichlet's conditions, F	
Fourier Series,	Trigonometric Fourier Series and Exponential Fourier Series with exan n, Fourier series representation of a periodic signals.	
At the end of the	e Module 2, students will be able to:	
· · ·	ourier series for the periodic signals. (BL-3)	
·	roblems by using Fourier series properties. (BL-3)	
3. Sketch t MODULE-3	he complex Fourier spectrum. (BL-3)	10 Uma
	FOURIER TRANSFORMS r Transform from Fourier series, Fourier Transform of standard signals, Fo	10 Hrs
coefficient diffe Magnitude-Phas properties of DT At the end of the 1. Analyze 2. Interpre 3. Solve pr 4. Analyze 5. Analyze	 anals, Properties of CT Fourier Transform, Systems characterized by Internatial equations. The Magnitude-Phase Representation of the Fourier of the Representation of the Frequency Response of LTI Systems. Definition, C FT for different types of signals and systems. a Module 3, students will be able to: b the periodic and aperiodic signals by applying Fourier transforms. (BL et the Magnitude-Phase Representation of F.T & LTI Systems. (BL-2) b the spectral characteristics of signals using Fourier transform. (BL-4) b of DTFT for different types of signals and systems. (BL-4) 	Transform, The Computation and -4)
MODULE-4	SAMPLING	7 Hrs
Signal from its	of a Continuous Time Signal by its Samples - Sampling Theorem, Reco Samples Using Interpolation, types of sampling-natural sampling, flat- to g, Effect of under sampling -Aliasing.	
 Illustrate Underst Compar Solve pr 	e Module 4, students will be able to: e the representation of a Continuous Time Signal by sampling. (BL-2) and the reconstruction of a sampled signal using Interpolation. (BL-2) e different sampling techniques. (BL-2) roblems for nyquist interval and nyquist rate. (BL-3)	
MODULE-5	LAPLACE TRANSFORMS & Z-TRANSFORMS	14 Hrs
and Laplace Tra the Laplace Tran Definition, Regi Fourier and Z T Using z-Transfo	on of Convergence, Properties of the z-Transform, Inverse z-Transform, R Transforms, Common z- Transform Pairs, Analysis and Characterization or rms.	Systems Using elation between
	e Module 4, students will be able to:	
I. Underst	and the properties of Laplace transform. (BL-2)	

- 2. Analyze the continuous-time and discrete-time signals and systems using Laplace transform. (BL-4)
- 3. Interpret the relationship between Fourier and Laplace Transforms. (BL-2)
- 4. Find the stability of the systems using ROC. (BL-1)
- 5. Understand the properties of Z transform. (BL-02)
- 6. Analyze the discrete-time signals and systems using Z transforms. (BL-04)
- 7. Interpret the relationship between Fourier and Z Transforms. (BL-02)
- 8. Find the stability of the systems using ROC. (BL-01)

Total hours: 48 Hours

Content beyond syllabus:

- 1. Discrete Time Fourier transform
- 2. Discrete Fourier transform

Self-Study:

Contents to promote self-Learning:

SNO	Module	Reference
1	Introduction to	https://nptel.ac.in/content/storage2/courses/117101055/downloa
	Signals and Systems	ds/Lec-10.pdf
2	Fourier series	http://jntuhsd.in/uploads/programmes/Module 7 Properties
		of Fourier Series and Complex Fourier Spectrum.PDF
3	Fourier transforms	http://jpkc.gnnu.cn/jpkc/Signal/wangluokecheng/Content/6.2%2
		0The%20MagnitudePhase%20Representation%20of%20the%20
		Frequency%20Response%20of%20LTI%20Systems.htm
4	Sampling	https://nptel.ac.in/content/storage2/courses/117101055/downloa
		ds/PS3.pdf
5	Laplace Transform&	https://www.yumpu.com/en/document/read/22782683/chapter-
	Z-Transforms	4-analysis-and-characterization-of-lti-systems
		https://www.youtube.com/watch?v=8CRShpEn9tI

Text Book(s):

1. A.V. Oppenheim, A.S. Willsky and S.H. Nawab, "Signals and Systems", 2ndEdition, PHI, 2009.

2. Simon Haykin and Van Veen, "Signals & Systems", 2ndEdition, Wiley, 2005.

3. Signals and Systems, J. Nagrath, S. N. Sharan, R. Ranjan, S. Kumar, TMH

Reference Book(s):

- 1. Simon Haykin and B. Van Veen, Signals & Systems, John Wiley, 2nd Edition, 2010.
- 2. A. Anand Kumar, Signals & Systems, PHI, 2011.
- 3. B.P. Lathi, Principles of Linear Systems and Signals, Oxford University Press, 2nd Edition, 2013.

Online Resources/ Web Resources:

- 1. <u>https://nptel.ac.in/courses/108/104/108104100/</u>
- 2. <u>https://nptel.ac.in/courses/117/104/117104074/#</u>
- https://eee.guc.edu.eg/Courses/Communications/COMM401%20Signal%20&%20System%20Theory/Alan%20 V.%20Oppenheim,%20Alan%20S.%20Willsky,%20with%20S.%20Hamid-Signals%20and%20Systems-Prentice%20Hall%20(1996).pdf
- 4. <u>https://books.google.co.in/books?id=MOVV94WUSIEC&printsec=frontcover#v=onepage&q&f=false</u>
- $5. \ \underline{https://www.tutorialspoint.com/signals_and_systems/index.htm}$
- 6. https://www.wisdomjobs.com/e-university/signals-and-systems-tutorial-2419.html
- 7. <u>http://bonnie.ece.gatech.edu/book/worked_problems.html</u>
- $8. \ \underline{https://pages.jh.edu/~bcooper8/sigma_files/courses/214/signalsandsystemsnotes.pdf}$

	NARAYANA ENGINEERING COLLEGE:NELLORE												
20EC2503			ANALOO	GELECTRO	NICS LAB			R20					
Semester	Н	ours / Wee	ek	Total	Credit		Max Mar	ks					
	L	Т	Р	hrs	С	CIE	SEE	TOTAL					
IV	0	0	3	36	1.5	40	60	100					
Pre-requisi	te: Basic k	nowledge	on amplif	iers and o	scillators.								
Course Objectives:													
1. Analyze amplifiers for frequency response													
2. Analyze feedback circuits, amplifier circuits and oscillator circuits													
3. Design and construct simple electronic circuits to accomplish a specific function, e.g., designing													
amplifiers	amplifiers												
Course Out	comes: Af	ter succes	sful compl	etion of th	e course, t	he student	t will be abl	e to:					
CO 1	Measure v	arious par	ameters of	analog circ	cuits and co	mpare exp	erimental re	esults in the					
	laboratory	with theo	retical anal	ysis. (BL-3)									
CO 2	Analyza n	ogativo foc	dhack amn	lifior circui	ts oscillato	rs Dower a	mplifiers, T	uned					
02	•	•	uback amp		is, Oscillato	is, ruwei a	impimers, r	uneu					
	amplifiers	.(DL-4)											
CO 3	Design an	alog electr	onic circuits	s using disc	rete compo	onents (BL-	3)						
CO 4	Design RC	and LC os	cillators, Fe	edback am	plifier for s	pecified gai	in and multi	stage					
	amplifiers	for Low, N	1id and higl	h frequenci	es. (BL-3)								

					(CO-PO	Марр	oing						
СО						Р	0						PSO	
	PO P											PO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1				1					2	2				
CO2	3	2			2				2	2				2
CO3	3	2	2	2	2				2	2			2	2
CO4			2		2				2	2			2	2
	•		•	•	1: Lov	<i>N</i> , 2-M	edium	, 3- Hi	gh	•	•			

COURSE CONTENT	СО					
Task-1 : COMMON EMITTER AMPLIFIER						
Objective: Design voltage divider based Common Emitter amplifier with discrete components	CO1					
and calculate the bandwidth of amplifier from its frequency response.	001					
Task-2: RC COUPLED AMPLIFIER						
Objective: Design two stage RC coupled amplifier for given specifications. Determine Gain and						
Bandwidth from its frequency response curve.						
Task-3: DARLINGTON AMPLIFIER						
Objective: Design Darlington amplifier and determine gain and bandwidth from frequency						
response	CO 2					
Task-4: CASCODE AMPLIFIER						

Objective: Design cascode amplifier and determine gain and bandwidth from	
frequency response	
Task-5: VOLTAGE SERIES FEEDBACK AMPLIFIER	
Objective: Design voltage series feedback amplifier for the given specifications. Determine the effect of feedback on the frequency response of a voltage series feedback amplifier.	CO 2
Task-6 : CURRENT SHUNT FEEDBACK AMPLIFIER	
Objective: Design and simulate current shunt feedback using PSPICE/Multisim	
and determine the effect of feedback on the frequency response	CO 2
Task-9: RC PHASE SHIFT OSCILLATOR	
Objective: Design and simulate RC Phase shift oscillator for the given specification using PSPICE /Multisim. Determine the frequency of oscillation using simulation tool.	CO 2
Task-10 : HARTLEY OSCILLATOR	
Objective: Design and simulate Hartley oscillator using PSPICE /Multisim and determine the	
frequency of oscillations	CO 2
Task-9: COLPITTS OSCILLATOR	
Objective: Design and simulate Colpitts oscillator using PSPICE /Multisim and determine the frequency of oscillations.	CO 4
Task-10: CLASS-A POWER AMPLIFIER	
Objective: Design and simulate class A power amplifier using PSPICE /Multisim, find out the efficiency and Plot the output waveforms.	CO 4
Task-11: CLASS-B PUSH PULL AMPLIFIER	
Objective: Design and simulate class B push-pull amplifier using PSPICE /Multisim, find out the	
efficiency and Plot the output waveforms.	CO 2
Task-12: SINGLE TUNED AMPLIFIER	
Objective: Design and simulate single tuned voltage amplifier using PSPICE /Multisim and determine the resonant frequency and bandwidth.	CO 2

Addition	onal Experiments:	
	Task-13: WEIN BRIDGE OSCILLATOR	
-	t ive: Design Wien bridge oscillator for the given specification. Determine the frequency llation.	CO 3
	Task-14 : CLASS C AMPLIFIER	
	Objective: Design and simulate class C power amplifier using PSPICE /Multisim and find the officiency and plot the output waveforms	CO 3
	find the efficiency and plot the output waveforms.	
Virtual		
1.	http://vlabs.iitkgp.ac.in/tcad/exp10/index.html#	
2.	http://vlab.amrita.edu/index.php?sub=1&brch=201	

- 1. Introduction to PSPICE Using OrCAD for Circuits and Electronics by Rashid Muhammad H
- 2. PSPICE and MATLAB for electronics: An integrated approach by John o. Attia
- Fundamentals of Electronic Circuit Design, Getting Started: MultiSim Textbook Edition byDavid J. Comer, Donald T. Comer.

Reference Book(s):

- 1. A Guide to Circuit Simulation and Analysis Using PSPICE by Paul W. Tuinenga
- 2. Robert L. Boylestad and Louis Nashelsky, "Electronic Devices and Circuits Theory" Pearson/Prentice Hall, 9th Edition, 2006.
- 3. Sedra A.S. and K.C. Smith, "Micro Electronic Circuits", Oxford University Press, 5th Edition.

Web References:

- 1. https://nptel.ac.in/courses/122/106/122106025/
- 2. <u>https://www.tutorialspoint.com/semiconductor_devices/index.htm</u>
- 3. <u>https://www.allaboutcircuits.com/textbook/semiconductors/</u>

	NARAYANA ENGINEERING COLLEGE:NELLORE										
20EC2504		MA	ATLAB A	ND SIM	ULINK L	AB		R20			
Semester	Н	ours / We	ek	Total	Credit		Max Ma	rks			
Semester	L	Т	Р	hrs	С	CIE	SEE	TOTAL			
IV	0	0	2	36	1	40	60	100			
Pre-requis	site: Know	vledge on	MATLA	B Basics	•						
Course Objectives:											
1. To provide practical exposure with generation and simulation of basic signals using standardized											
tools.											
2. To analyze signals and sequences using Fourier, Laplace and Z-transforms.											
	pply Matlab										
Course Ou	tcomes: Aft	er successf	ul comple	etion of the	e course, th	e student v	will be able	e to:			
	Demonstrate	e Operation	ns on Matri	ices, Gener	ation of Va	rious signa	ls and Sequ	iences,			
CO 1	Convolution	and Correl	ation of sig	gnals and So	equences. (BL-2)					
	Evoquto orith	maticana	rations on	cignols and		(0) 2)					
CO 2	Execute arith	imetic ope	rations on	signals and	rsequences	. (BL-Z)					
CO 3	Analyze the	auto correl	ation and o	cross corre	lation of vai	rious signa	ls. (BL-4)				
	Estimate the	frequency	response	of LTI syste	ms using Fo	ourier and	Laplace tra	nsforms. (BL-			
CO 4	4)										

	CO-PO Mapping													
СО						P	0						PSO	
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	1	1							2				1	2
CO2	2	1							1				1	2
CO3	2	2	2	1					3				1	2
CO4	2	2	2	1					2				2	2
	-	•	•]	l:Lov	v, 2-M	lediun	n, 3- H	ligh					

COURSE CONTENT	CO
Task-1: INTRODUCTION TO MATLAB	
Objective: To familiarize MATLAB Tool.	CO1
Task-2: OPERATIONS ON MATRICES	
 Objective: To write a MATLAB program to perform various mathematical operations on matrices. A. Addition of two N×N matrices B. Subtraction of two N×N matrices C. Multiplication of two N×N matrices D. Inverse of a matrix E. Eigen values of a matrix 	CO 1

Task-3: GENERATION OF SIGNALS AND SEQUENCES								
Objective: To write a MATLAB program to generate various signals and Sequences such as unit Impulse, Unit Step, Square, Sawtooth, Triangular, Sinusoidal, Ramp, sinc function.	CO 1							
Task-4: OPERATIONS ON SIGNALS AND SEQUENCES								
Objective: To write a MATLAB program to perform various operations on signals and sequences such as								
A. Addition								
B. Multiplication								
C. Scaling								
D. Shifting								
E. Folding								
Task-5: ENERGY AND POWER OF A SIGNAL								
Objective: To write a MATLAB program to find Energy and power of a given signal.								
Task-6: CONVOLUTION AND CORRELATION OF SIGNALS AND SEQUENCES								
Objective: To write a MATLAB program to perform convolution and correlation of given signals and sequences using MATLAB.								
Task-7: FOURIER TRANSFORM OF A SIGNAL								
Objective: To write a MATLAB program to find the Fourier Transform of a Signal and plot its Magnitude and Phase Spectrum.								
Task-8: VERIFICATION OF LINEARITY AND TIME INVARIANCE PROPERTIES								
Objective: To write a MATLAB program to verify Linearity and Time Invariance properties of Continuous/Discrete Systems.								
Task-9: LAPLACE TRANSFORM OF CONTINUOUS SIGNAL								
Objective: To write a MATLAB program to find the Laplace transform of a signal.								
Task-10: Z-TRANSFORM OF DISCRETE SIGNAL								
Objective: To write a MATLAB program to find the Z-transform of a discrete signal.								
Task-11: GAUSSIAN NOISE								
Objective: To write a MATLAB program to generate Complex Gaussian noise and find its mean, variance, Probability Density Function (pdf) and Power Spectral Density (PSD)								
Task-12: VERIFICATION OF SAMPLING THEOREM								
Objective: To write a MATLAB Program to verify Sampling theorem	CO 4							

Additional Experiments:	
Task-13: LOCATING ZEROS AND POLES	
Objective: To write a MATLAB program to Locate Zeros and Poles and plot in S-Plane or Z-	CO 3

Plane for the given Transfer Function.

Task-14: DETECTION OF NOISE BY CORRELATION	
Objective: To write a MATLAB program to detect Noise by Auto Correlation / Cross correlation.	CO 1
Virtual Labs:	
1. To represent discrete time signal and perform basic mathematical operations on DTS	
http://vlabs.iitb.ac.in/vlabs-dev/labs/mit_bootcamp/signals/labs/exp1/index.php	
2. Signals and their properties	
http://ssl-iitg.vlabs.ac.in/Signals%20and%20their%20properties(objectives).html	
3. Fourier analysis of signals	
http://ssl-iitg.vlabs.ac.in/Signals_exp3(objectives).html	
4. System and their property	
http://ssl-iitg.vlabs.ac.in/Exp_2_Signals%20and%20their%20property(objectives).html	
5. Analysis of LTI system response	
http://ssl-iitg.vlabs.ac.in/Signals%20and%20their%20properties%205(objectives).html	
6.Sampling and signal Reconstruction	
http://ssl-iitg.vlabs.ac.in/Sampling%20and%20signal%20reconstruction%20(objective).html	

Text Book(s):

1. A.V. Oppenheim, A.S. Willsky and S.H. Nawab, "Signals and Systems", 2ndEdition, PHI, 2009.

2.MATLAB for Beginners: A Gentle Approach, Petra Books, Peter I.Kattan, ISBN: 978-1438203096

3.Stormy Attaway, "Matlab: a Practical Introduction to Programming and Problem Solving", Elsevier. **Reference Book(s):**

1.Signals & Systems Using MATLAB Luis F. Chaparro and Aydin Akan, 3rd Edition ,2019 2. Signals & Systems Using MATLAB Alan V. Oppenheim, Alan S. Willsky, *MIT*

S. Hamid Nawab,2nd Edition ,1997

3. Simon Haykin and Van Veen, "Signals & Systems", 2ndEdition, Wiley, 2005.

4. A. Anand Kumar, Signals & Systems, PHI, 2011.

5. B.P. Lathi, Principles of Linear Systems and Signals, Oxford University Press, 2nd Edition, 2013.

6.Signals and Systems, J. Nagrath, S. N. Sharan, R. Ranjan, S. Kumar, TMH

Web References:

- 1..<u>https://electrosome.com/signal-generation-in-matlab/</u>
- 2.<u>https://electrosome.com/signal-operations-in-matlab/</u>
- 3.<u>https://in.mathworks.com/help/signal/ug/linear-and-circular-convolution.html</u>
- 4.https://in.mathworks.com/help/matlab/math/basic-spectral-analysis.html

		NA	RAYANA	ENGINE	ERING CO	DLLEGE:	NELLORE	C							
20EC2008	3	ANA	LOG AN	D DIGITA	AL COMMUNICATION SYSTEMS R20										
Semester		Н	ours / Wee	ek	Total	Credit	Max Ma	rks							
		L	Т	Р	hrs	С	CIE	SEE	TOTAL						
V		3 0 0 48 3 40 60 100													
$\begin{array}{c} \checkmark & \text{Si} \\ \checkmark & \text{PI} \\ \hline \textbf{Course O} \\ 1. \\ 2. \\ 3. \end{array}$	 Electronic Devices Signals and Systems Probability and Random Processes Objectives: To familiarize various modulation and demodulation techniques of analog communication systems. To acquire knowledge on angle modulation and demodulation techniques. To learn the function of various stages of AM, FM transmitters. To summarize various baseband and carrier modulation techniques 														
Course C	outcom	es: After si	uccessful	completion	n of the co	urse, the st	udent will	be able to	:						
CO 1				<u> </u>		n systems E									
CO 2	Verify the effect of noise on the performance of communication system BL2														
CO 3	Analyze the various Digital modulation techniques BL4														
CO 4	Apply	Apply the Amplitude, frequency and phase shift keying techniques BL3													
CO 5	Make	use of the o	different e	rror contro	I codes for	efficient tra	ansmission	Make use of the different error control codes for efficient transmission BL3							

	CO-PO Mapping													
						PO							PS	50
CO	PO1	PO2	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO
			3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	3	2										2	
CO2	3	3	3										1	
CO3	3	3	3										2	
CO4	3	3	2										1	
CO5	3	2	2										2	
	•			1:	Low,	2-Mec	lium, 3	- High	1	•	•	•		

	COURSE CONTENT							
MODULE - 1 CONTINUOUS WAVE MODULATION Hours:1								
modifications – D	ommunication systems, Need for modulation, Amplitude Modulation (AMSB, SSB, VSB, Frequency translation, Frequency Division Multiplexing (FIon: Frequency Modulation (FM), Phase modulation, Nonlinear Effects er.	DM).						
At the end of the N	Adule 1, students will be able to:							
1. Explain	the benefits and applications of modulation.(BL:2)							

2. Describe the generation and detection of amplitude modulated signals.(BL:2) 3. Compare AM, DSB-SC, SSB-SC and VSB. (BL:2) MODULE -2 NOISE AND PULSE MODULATION Hours:08 Introduction to noise: Types of noise, Receiver model, Noise in AM, DSB, SSB, and FM Receivers. Preemphasis and De-emphasis in FM. Introduction to pulse modulation: Sampling process, PAM, PWM and PPM-generation and detection. At the end of the Module 2, students will be able to: 1.List the types of noise. (BL:1) 2. Define noise temperature, noise bandwidth and noise figure. (BL:2) 3. List the types of pulse modulation schemes. (BL:2) 4. Analyze time and frequency domain representation of narrowband noise. (BL:4) 5. Compare PAM, PWM, PPM. (BL:2) **MODULE-3** SOURCE CODING SYSTEMS Hours:10 Comparison of analog and digital communication systems, Elements of digital communication system, Sampler, Quantization-types and Encoder, PCM, Differential PCM, Delta Modulation (DM), Adaptive DM, Time Division Multiplexing (TDM), Comparison of the above systems. At the end of the Module 3, students will be able to: 1. Describe the elements of digital communications system. (BL:2) 2. Explain types of quantization techniques. (BL:2) 3. Differentiate PCM and DPCM. (BL:2) 4. Explain how different noises are eliminated in ADM?(BL:2) 5. Explain Time Division Multiplexing (TDM). (BL:4) **MODULE-4 BAND-PASS DATA TRANSMISSION** Hours:10 Introduction, Need for carrier modulation techniques, Binary shift keying: ASK, FSK, PSK, DPSK generation, Coherent and non coherent detection, Band width, Signal space diagram, Probability error calculation, M-ary shift keying: ASK, FSK, PSK, Quadrature Amplitude Modulation (QAM), Minimum Shift Keying (MSK). At the end of the Module 3, students will be able to: 1. Explain the need for carrier modulation techniques. (BL:2) 2. Differentiate coherent and non-coherent detection. (BL:2) 3. Analyze carrier modulation techniques. (BL:4) 4. Explain Quadrature Amplitude Modulation. (BL:2) **MODULE-5 INFORMATION THEORY & CHANNEL CODING** Hours:10 Information theory: Message, Information, Entropy, Mutual information & its properties, Channel capacity, Shannon Hartley Theorem, Shannon Fano & Huff man coding and Illustrative problems. Channel Coding: Error detection & correction - Repetition & Parity check codes, Interleaving, Code vectors and Hamming distance, FEC and ARQ systems, Linear block codes – Matrix representation of block Codes, Convolutional codes, Viterbi decoding.

At the end of the Module 5, students will be able to:

- 1. Define information. (BL:1)
- 2. Explain the types of entropies and its properties. (BL:2)
- 3. Discuss source coding theorem.(BL:2)Explain the concept of frequency interleaving. (BL:2)
- 4. Analyze channel coding techniques. (BL:4)

Term work:

• Design and simulate modulation and demodulation circuits using MATLAB Simulink.

Content beyond syllabus:

Advanced Communication Systems.

Self-Study:

Contents to promote self-Learning:

SN	Торіс	CO	Reference
0			
1	DSB-SC	CO1	https://www.youtube.com/watch?v=OC451c dFLoQ
2	Pre-emphasis and De-emphasis circuits	CO2	https://youtu.be/OUrp4unGeDg
3	Noise Analysis of SSB-SC	CO3	https://youtu.be/3dGEk5bzNoc
4	Time Division Multiplexing	CO4	https://www.youtube.com/watch?v=7JXkqS Lc18g
5	Quadrature Amplitude Modulation	CO5	https://www.electronics- notes.com/articles/radio/modulation/quadratur e-amplitude-modulation-what-is-qam- basics.php
6	Forward Error Correction (FEC) Systems	CO5	https://www.tutorialspoint.com/forward-error- correction-fec

Text Book(s):

1. Simon Haykin, "Communication Systems", JohnWiley& Sons, 4th Edition, 2004.

2. B. P. Lathi, Zhi Ding "Modern Digital and Analog Communication Systems", Oxford press, 2011

Reference Book(s):

1. Sam Shanmugam, "Digital and Analog Communication Systems", JohnWiley& Sons, 1999.

2. Bernard Sklar, F. J. harris"Digial Communications: Fundamentals and Applications", Pearson Publications, 2020.

3. Taub and Schilling, "Principles of Communication Systems", Tata McGraw Hill, 2007

Online Resources:

- 1. <u>https://nptel.ac.in/courses/117/105/117105143/</u>
- 2. <u>https://nptel.ac.in/courses/117/101/117101051/</u>
- 3. https://www.udemy.com/course/analog-communication/
- 4. https://www.tutorialspoint.com/analog_communication/index.htm
- 5. https://www.classcentral.com/course/swayam-analog-communication-13893
- 6. <u>https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-450-principles-of-digital-communications-i-fall-2006/video-lectures/</u>
- 7. <u>https://nptel.ac.in/courses/117/101/117101051/</u>
- 8. https://swayam.gov.in/NPTEL
- 9. <u>https://nptel.ac.in/courses/117/105/117105143/</u> https://nptel.ac.in/courses/117/105/117105144/

Web References:

- 1. <u>https://www.youtube.com/watch?v=S2vzyk6BXtA</u> (Square law modulator for AM Generation)
- 2. <u>https://www.youtube.com/watch?v=Q5dC9TbzR9k</u> (Phase Locked Loop)
- 3. <u>https://www.youtube.com/watch?v=zy4DIBYjnFM</u> (Frequency Division Multiplexing)
- 4. <u>https://www.youtube.com/watch?v=GzWVeiX9ohk</u> (Matched Filter)
- 5. <u>https://www.youtube.com/watch?v=ij760lCUtfw</u> (QPSK)
- 6. <u>https://www.youtube.com/watch?v=dTPzZ3X-wLA</u> (Linear Block Codes)
- 7. https://www.tutorialspoint.com/analog_communication/analog_communication
- 8. https://www.sciencedirect.com/topics/engineering/analog-communication
- 9. http://complextoreal.com/tutorials/
- 10. <u>https://www.tutorialspoint.com/digital_communication/digital_communication_digital_modulation_techniques.htm</u>
- 11. <u>https://www.electronicdesign.com/technologies/communications/article/217987</u> <u>37/understanding-modern-digital-modulation-techniques</u>
- 12. <u>https://www.tutorialspoint.com/principles_of_communication/principles_of_communication_noise.htm</u>

			NAR	AYA		GINE				EGE:N	ELLO	ORE		
20EC2009					Line	ar IC A							R20	
Semester			ours / V	Veek	D	Tot		Credi	t		~		x Marks	
	L		Т		Р	hr	S	C		CI E	S.	EE	,	TOTAL
V	3		0		0	48		3		40		50		100
Pre-requis	ite: B	asic l	knowle	dge of	f Elect	ronic I	Devic	es, ED	C an	d Digi	ital Lo	gic De	sign.	
Modu	le 1		Nodule	2	Modu	ule 3	М	odule	4	Modu	ule 5	To	tal hours	Course
10			09	-	1			09	·	1			48	Objecti
ves: 1. 2. 3. 4.	Expla To in To sti To kr To St functi Dutco Ana Inte	troduc udy an now th tudy th ion Ic mes: lyze t	e difference the b nd designe designe designe sond he concess (i.e., 2	oasic t gn van gn of o eepts o IC 55: succ ous c aracte	amplif puilding rious ap oscillato of the w 5 Times essful haract	ier and g block oplicati ors and vavefor r, IC 56 comp eristics and co	s of c ons c l Acti m ge 55 PI oletic s of D	ectrica operatio of OPA ve filte neratio .L).	he contial a	ameter Amplif ing op nverte Durse, amplif p-amp	s. fier. amps. rs and the st ier. (Bl	introdu cudent L: 4). 2).	ice some	special
CO 4	Des	ign th	e Oscil	lators	s and a	ctive fi	ilters	using	Op-a	mp (B	L: 4).			
C0 5	Stuc	ly the	applica	ations	of the	•		oose in Mappi	Ũ	ted ci	rcuits a	ind Da	ta Conver	tors. (BL: 2).
СО						<u> </u>		Mapp	ing					PSO
	PO 1	PO 2	PO 3	РО 4	PO 5	PO 6	РО 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO1	PSO 2
CO1	3	3	3											
CO2	3	3	2											
CO3	3	3	3		1								1	1
CO4	3	3	2		2								2	2
CO5	3	3	2		2								2	1
MODULE-		C. C		<u> </u>	<mark>ed Cir</mark>	DURSE cuits a 's. Di	nd D	ifferer	<mark>tial</mark> A			ntial	10ho Amplifier	
Configuration Dalanced/unl Methods of i	ons, D balance	DC a add add add add add add add add add	nd A0 put cor	C an nfigura	alysis ations,	of D Proper	ual ties c	input of the d	bala iffere	nced/u	ınbalar Amplif	iced a	and sing cuit config	le input gurations,

1. Infer the Dc and AC Analysis of BJT Differential AmplifierConfigurations.(BL2) 2. Choose the Different methods to improve CMRR in Differential amplifier.(BL2) 2. Choose the Different methods to improve CMRR in Differential amplifier.(BL2) MODULE - 2 MODULE - 2 Operational amplifiers & OP-AMP Configurations Phours Introduction, Basic information of Op-Amp, Block diagram of an Op-Amp, Ideal and Practical Voltage Transfer curve, DC and AC characteristics of Op-Amp (Shrs). Introduction, feedback.configurations, voltage series feedback, voltage shunt feedback and differential amplifiers. Frequency response, High frequency Op-Amp equivalent circuit, open loop gain Vs frequency, circuit stability, slew rate. (Shrs). At the end of the Module 2, students will be able to: 1. Demonstrate the Op-Amp with negative and positive feedback.(BL2) 2. Outline the Gain Bandwidth Concept and the frequency response of the amplifiers. (BL2) 3.Illustrate various stages of operational amplifier(BL2) 4. Infer how to draw the ideal and practical Op-Amp Voltage Transfer Curve.(BL2) 5.Illustrate the DC and AC characteristics of an Op-Amp.(BL2) MODULE -3 OP-AMP APPLICATIONS I0hours DC and AC amplifiers, stumming Amplifiers for various applications.(BL3) 1.Illustrate the various types of Wave forms as sine wave, square, triangular and Saw-tooth wave forms.(BL2) 3.Summarize the linear(CapplicationshelpinICBasedElectronicProjectsDesign.(BL2) Mobule 4. MODULE -3 Oscillators& Active Filte	1	
2. Choose the Different methods to improve CMRR in Differential amplifier.(BL2) 3.Illustrate the use of level translator in differential amplifiers & OP-AMP Configurations Phours Introduction, Basic information of Op-Amp, Block diagram of an Op-Amp, Ideal and Practical Op-Amp Phours Introduction, Reading and the end of the end of the end of the end of the Module 2, students will be able to: Introduction, feedbackconfigurations, voltage series feedback, voltage shunt feedback and differential amplifiers, Frequency response, High frequency Op-Amp equivalent circuit, open loop gain Vs Frequency, circuit stability, slew rate. (Shx). At the end of the Module 2, students will be able to: 1. Demonstrate the Op-Amp with negative and positive feedback. (BL2) 2. Outline the Gain Bandwidth Concept and the frequency response of the amplifiers. (BL2) 3.Illustrate various stages of operational amplifier(BL2) 4.Infer how to draw the ideal and practical Op-Amp Voltage Transfer Curve.(BL2) 5.Illustrate the DC and AC characteristics of an Op-Amp. (BL2) 10hours DC and AC amplifiers, Summing Amplifiers, instrumentation amplifier, voltage to current converter, current to voltage converter, Integrator, Comparator, zero crossing detector, Schmitt Trigger, Square wave generator, triangular wave and Saw-tooth wave form generators.(10 hrs.) At the end of the Module 3, students will be able to: 1.Design Circuits using Operational Amplifiers for various applications.(BL3) 2.Illustrate the various types of Wave forms as sine wave, square, triangular and Saw-		At the end of the Module 1, students will be able to:
3.Illustrate the use of level translator in differential amplifier.(BL2) Phours MODULE - 2 Operational amplifiers & OP-AMP Configurations Phours Introduction, Basic information of Op-Amp, Block diagram of an Op-Amp, Ideal and Practical Op-Amp Characteristics, Ideal Equivalent Circuit of an Op-Amp, Ideal and Practical Voltage Transfer curve, DC and AC characteristics of Op-Amp (5hrs). Introduction,feedbackconfigurations,voltage series feedback, voltage shunt feedback and differential amplifiers, Frequency, cricuit stability, slew rate.(5hrs). At the end of the Module 2, students will be able to: 1.Demonstrate the Op-Amp with negative and positive feedback.(BL2) 2.Outline the Gain Bandwidth Concept and the frequency response of the amplifiers. (BL2) 3.Illustrate various stages of operational amplifier(BL2) 4.Infer how to draw the ideal and practical Op-Amp Voltage Transfer Curve.(BL2) 5.Illustrate the DC and AC characteristics of an Op-Amp, RL2) MODULE -3 OP-AMP APPLICATIONS Introduce converter, Integrator, Differentiator, Comparator, zero crossing detector, Schmitt Trigger, Square wave generator, triangular wave and Saw-tooth wave form generators.(10 hrs) At the end of the Module 3, students will be able to: 1.Design Circuits using Operational Amplifiers for various applications.(BL3) 2.Illustrate the various types of Wave forms as sine wave, square, triangular and Saw-tooth wave forms.(BL2) Summarize the linearlCapplicationshelpinlCBasedElectronicProjectsDesi		
MODULE - 2 Operational amplifiers & OP-AMP Configurations Phours Introduction, Basic information of Op-Amp, Block diagram of an Op-Amp, Ideal and Practical Op-Amp Characteristic's, Ideal Equivalent Circuit of an Op-Amp, Ideal and Practical Voltage Transfer curve, DC and AC characteristics of Op-Amp,(Shrs). Introduction,feedback.configurations,voltage series feedback, voltage shunt feedback and differential amplifiers, Frequency response, High frequency Op-Amp equivalent circuit, open loop gain Vs frequency, circuit stability, slew rate. (Shrs). At the end of the Module 2, students will be able to: 1. Demonstrate the Op-Amp with negative and positive feedback.(BL2) 2. 2. Outline the Gain Bandwidth Concept and the frequency response of the amplifiers. (BL2) 3. 3. Illustrate various stages of operational amplifier(BL2) 4. 4. Infer how to draw the ideal and practical Op-Amp Voltage Transfer Curve.(BL2) 5. 5. Illustrate the DC and AC characteristics of an Op-Amp.(BL2) 10hours DC and AC amplifiers, Summing Amplifiers, instrumentation amplifier, voltage to current converter, current to voltage converter, Integrator, Differentiator , Comparator , zero crossing detector, Schmitt Trigger, Square wave generator, triangular wave and Saw-tooth wave form generators.(10 hrs) At the end of the Module 3, students will be able to: 1. Design Circuits using Operational Amplifiers for various applications.(BL3) 3. 2. Illustrate the various types of Wave forms as sine wave, square, triangular and Saw-tooth wave forms.(BL2) 3.		
Introduction, Basic information of Op-Amp, Block diagram of an Op-Amp, Ideal and Practical Op-Amp Characteristic's, Ideal Equivalent Circuit of an Op-Amp, Ideal and Practical Voltage Transfer curve, DC and AC characteristics of Op-Amp.(5hrs). Introduction, feedbackconfigurations, voltage series feedback, voltage shunt feedback and differential amplifiers, Frequency response, High frequency Op-Amp equivalent circuit, open loop gain Vs frequency, circuit stability, slew rate. (5hrs). At the end of the Module 2, students will be able to: 1. 1.Demonstrate the Op-Amp with negative and positive feedback.(BL2) 2. 2. Outline the Gain Bandwidth Concept and the frequency response of the amplifiers. (BL2) 3. 3. 1. 4. Infer how to draw the ideal and practical Op-Amp Voltage Transfer Curve.(BL2) 5. 5. 2. OP-AMP APPLICATIONS 10 10 PC and AC amplifiers, Summing Amplifiers, instrumentation amplifier, voltage to current converter, current to voltage converter, Integrator, Differentiator, Comparator, zero crossing detector, Schmitt Trigger, Square wave generator, triangular wave and Saw-tooth wave form generators.(10 hrs) At the end of the Module 3, students will be able to: 1. 1. Design Circuits using Operational Amplifiers for various applications.(BL3) 2. 1. 2. MODULE 4 0 Oscillators& Active Filters		
Characteristic's, Ideal Equivalent Circuit of an Op-Amp, Ideal and Practical Voltage Transfer curve, DC and AC characteristics of Op-Amp,(Shrs). Introduction,feedbackconfigurations,voltage series feedback, voltage shunt feedback and differential amplifiers, Frequency response, High frequency Op-Amp equivalent circuit, open loop gain Vs frequency, circuit stability, slew rate (Shrs). At the end of the Module 2, students will be able to: 1.Demonstrate the Op-Amp with negative and positive feedback.(BL2) 2. Outline the Gain Bandwidth Concept and the frequency response of the amplifiers. (BL2) 3.Illustrate various stages of operational amplifier(BL2) 4.Infer how to draw the ideal and practical Op-Amp Voltage Transfer Curve.(BL2) 5.Illustrate the DC and AC characteristics of an Op-Amp, (BL2) MODULE -3 OP-AMP APPLICATIONS IV and AC amplifiers, Summing Amplifiers, instrumentation amplifier, voltage to current converter, current to voltage converter, Integrator, Differentiator , Comparator , zero crossing detector, Schmitt Trigger, Square wave generator, triangular wave and Saw-tooth wave form generators.(10 hrs) At the end of the Module 3, students will be able to: 1.Design Circuits using Operational Amplifiers for various applications.(BL3) 2.Illustrate the various types of Wave forms as sine wave, square, triangular and Saw-tooth wave forms.(BL2) 3.Summarize the linearlCapplicationshelpinICBasedElectronicProjectsDesign.(BL2) MODULE-4 Oscillators& Active Filters Phours		MODULE – 2 Operational amplifiers & OP-AMP Configurations 9hours
amplifiers, Frequency response, High frequency Op-Amp equivalent circuit, open loop gain Vs frequency, circuit stability, slew rate. (5hrs). At the end of the Module 2, students will be able to: 1.Demonstrate the Op-Amp with negative and positive feedback.(BL2) 2. Outline the Gain Bandwidth Concept and the frequency response of the amplifiers. (BL2) 3.Illustrate various stages of operational amplifier(BL2) 4.Infer how to draw the ideal and practical Op-Amp Voltage Transfer Curve.(BL2) 5.Illustrate the DC and AC characteristics of an Op-Amp.(BL2) MODULE -3 OP-AMP APPLICATIONS IO and AC amplifiers, Summing Amplifiers, instrumentation amplifier, voltage to current converter, current to voltage converter, Integrator, Differentiator , Comparator , zero crossing detector, Schmitt Trigger, Square wave generator, triangular wave and Saw-tooth wave form generators.(10 hrs) At the end of the Module 3, students will be able to: 1.Design Circuits using Operational Amplifiers for various applications.(BL3) 2.Illustrate the various types of Wave forms as sine wave, square, triangular and Saw-tooth wave forms.(BL2) MODULE-4 Oscillators& Active Filters Maye forms.(BL2) Summarize the linearlCapplicationshelpinICBasedElectronicProjectsDesign.(BL2) MODULE-4 Oscillators Active Filters.(9 hrs) At the end of the Module 4, students will be able to I. Demonstrate		Characteristic's, Ideal Equivalent Circuit of an Op-Amp, Ideal and Practical Voltage Transfer curve, DC
1. Demonstrate the Op-Amp with negative and positive feedback.(BL2) 2. Outline the Gain Bandwidth Concept and the frequency response of the amplifiers. (BL2) 3. Illustrate various stages of operational amplifier(BL2) 4. Infer how to draw the ideal and practical Op-Amp Voltage Transfer Curve.(BL2) 5. Illustrate the DC and AC characteristics of an Op-Amp.(BL2) MODULE -3 OP-AMP APPLICATIONS IOhours DC and AC amplifiers, Summing Amplifiers, instrumentation amplifier, voltage to current converter, current to voltage converter, Integrator, Differentiator , Comparator , zero crossing detector, Schmitt Trigger, Square wave generator, triangular wave and Saw-tooth wave form generators.(10 hrs) At the end of the Module 3, students will be able to: 1.Design Circuits using Operational Amplifiers for various applications.(BL3) 2.Illustrate the various types of Wave forms as sine wave, square, triangular and Saw-tooth wave forms.(BL2) MODULE-4 OScillators& Active Filters Phours RC Phase shift and Weinbridge oscillators, Active filters: Classification of Filters, 1st and 2nd order LPF & HPF filters, Band pass, Band reject and All pass filters.(9 hrs) At the end of the Module 4, students will be able to 1. 1. Demonstrate the basic operating principles of oscillator.(BL2) 2. 2. Illustrate the various types of Filters. (BL2) 3. Explain First order Low Pass filter with Circuit diagram.(BL2) 3. Ex		amplifiers, Frequency response, High frequency Op-Amp equivalent circuit, open loop gain Vs frequency, circuit stability, slew rate. (5hrs).
3.Illustrate various stages of operational amplifier(BL2) 4.Infer how to draw the ideal and practical Op-Amp Voltage Transfer Curve.(BL2) 5.Illustrate the DC and AC characteristics of an Op-Amp.(BL2) MODULE -3 OP-AMP APPLICATIONS DC and AC amplifiers, Summing Amplifiers, instrumentation amplifier, voltage to current converter, current to voltage converter, Integrator, Differentiator , Comparator , zero crossing detector, Schmitt Trigger, Square wave generator, triangular wave and Saw-tooth wave form generators.(10 hrs) At the end of the Module 3, students will be able to: 1.Design Circuits using Operational Amplifiers for various applications.(BL3) 2.Illustrate the various types of Wave forms as sine wave, square, triangular and Saw-tooth wave forms.(BL2) MODULE-4 MODULLE-4 Oscillators& Active Filters Phours RC Phase shift and Weinbridge oscillators, Active filters: Classification of Filters, 1st and 2nd order LPF & HPF filters, Band pass, Band reject and All pass filters.(9 hrs) At the end of the Module 4, students will be able to 1. Demonstrate the basic operating principles of oscillator.(BL2) 2. Illustrate the various types of Filters. (BL2) 2. 3. Explain First order Low Pass filter with Circuit diagram.(BL2) MODULE-5 MODULE-5 Specialized applications, PLL, operating principles, Monolithic PLL, applications.(5 hrs) Introduction, Basic DAC techniques, Binary Weighted Resistor DAC, R-2R Ladder DAC,		
4. Infer how to draw the ideal and practical Op-Amp Voltage Transfer Curve.(BL2) 5. Illustrate the DC and AC characteristics of an Op-Amp.(BL2) MODULE -3 OP-AMP APPLICATIONS IO and AC amplifiers, Summing Amplifiers, instrumentation amplifier, voltage to current converter, current to voltage converter, Integrator, Differentiator , Comparator , zero crossing detector, Schmitt Trigger, Square wave generator, triangular wave and Saw-tooth wave form generators.(10 hrs) At the end of the Module 3, students will be able to: 1. Design Circuits using Operational Amplifiers for various applications.(BL3) 2. Illustrate the various types of Wave forms as sine wave, square, triangular and Saw-tooth wave forms.(BL2) 3. Summarize the linearlCapplicationshelpinICBasedElectronicProjectsDesign.(BL2) MODULE-4 Oscillators& Active Filters 9hours RC Phase shift and Weinbridge oscillators, Active filters: Classification of Filters, 1st and 2nd order LPF 4 the end of the Module 4, students will be able to 1. Demonstrate the basic operating principles of oscillator.(BL2) 1. Demonstrate the basic operating principles of oscillator.(BL2) 2. Illustrate the various types of Filters. (BL2) 1. Demonstrate the various types of Filters. (BL2) 3. Explain First order Low Pass filter with Circuit diagram.(BL2) 1. Dhours 555 timer IC (Mono-stable& Astable operation) & its applications, PLL, operating principles, Monolithic PLL, applications.(5 hrs) 1. Introduction, Basic DAC techniques, B		2. Outline the Gain Bandwidth Concept and the frequency response of the amplifiers. (BL2)
5.Illustrate the DC and AC characteristics of an Op-Amp.(BL2) MODULE -3 OP-AMP APPLICATIONS 10hours DC and AC amplifiers, Summing Amplifiers, instrumentation amplifier, voltage to current converter, current to voltage converter, Integrator, Differentiator, Comparator, zero crossing detector, Schmitt Trigger, Square wave generator, triangular wave and Saw-tooth wave form generators.(10 hrs) At the end of the Module 3, students will be able to: 1.Design Circuits using Operational Amplifiers for various applications.(BL3) 2.Illustrate the various types of Wave forms as sine wave, square, triangular and Saw-tooth wave forms.(BL2) Saw-tooth MODULE-4 Oscillators& Active Filters 9hours RC Phase shift and Weinbridge oscillators, Active filters: Classification of Filters, 1st and 2nd order LPF & HPF filters, Band pass, Band reject and All pass filters.(9 hrs) At the end of the Module 4, students will be able to 1. Demonstrate the basic operating principles of oscillator.(BL2) 2. Illustrate the various types of Filters. (BL2) Specialized applications, PLL, operating principles, Monolithic 3. Explain First order Low Pass filter with Circuit diagram.(BL2) MODULE-5 Specialized applications, PLL, operating principles, Monolithic PLL, applications.(5 hrs) Introduction, Basic DAC techniques, Binary Weighted Resistor DAC, R-2R Ladder DAC, Inverted R-2R DAC, D/A Specifications, A/D Converters - Flash type, Successive Approximation type, Dual Slope		3.Illustrate various stages of operational amplifier(BL2)
MODULE -3 OP-AMP APPLICATIONS 10hours DC and AC amplifiers, Summing Amplifiers, instrumentation amplifier, voltage to current converter, current to voltage converter, Integrator, Differentiator, Comparator, zero crossing detector, Schmitt Trigger, Square wave generator, triangular wave and Saw-tooth wave form generators.(10 hrs) At the end of the Module 3, students will be able to: 1. Design Circuits using Operational Amplifiers for various applications.(BL3) 2.11lustrate the various types of Wave forms as sine wave, square, triangular and Saw-tooth wave forms.(BL2) 3.Summarize the linearlCapplicationshelpinICBasedElectronicProjectsDesign.(BL2) MODULE-4 Oscillators& Active Filters 9hours RC Phase shift and Weinbridge oscillators, Active filters: Classification of Filters, 1st and 2nd order LPF & HPF filters, Band pass, Band reject and All pass filters.(9 hrs) At the end of the Module 4, students will be able to 1 1. Demonstrate the basic operating principles of oscillator.(BL2) Specialized applications 10hours 555 timer IC (Mono-stable& Astable operation) & its applications, PLL, operating principles, Monolithic PLL, applications.(5 hrs) Introduction, Basic DAC techniques, Binary Weighted Resistor DAC, R-2R Ladder DAC, Inverted R-2R DAC, D/A Specifications, A/D Converters - Flash type, Successive Approximation type, Dual Slope		4.Infer how to draw the ideal and practical Op-Amp Voltage Transfer Curve.(BL2)
DC and AC amplifiers, Summing Amplifiers, instrumentation amplifier, voltage to current converter, current to voltage converter, Integrator, Differentiator, Comparator, zero crossing detector, Schmitt Trigger, Square wave generator, triangular wave and Saw-tooth wave form generators.(10 hrs) At the end of the Module 3, students will be able to: 1. Design Circuits using Operational Amplifiers for various applications.(BL3) 2.Illustrate the various types of Wave forms as sine wave, square, triangular and Saw-tooth wave forms.(BL2) 3.Summarize the linearICapplicationshelpinICBasedElectronicProjectsDesign.(BL2) MODULE-4 Oscillators & Active Filters Phours RC Phase shift and Weinbridge oscillators, Active filters: Classification of Filters, 1st and 2nd order LPF & HPF filters, Band pass, Band reject and All pass filters.(9 hrs) At the end of the Module 4, students will be able to 1. Demonstrate the basic operating principles of oscillator.(BL2) 2. Illustrate the various types of Filters. (BL2) 3. Explain First order Low Pass filter with Circuit diagram.(BL2) MODULE-5 Specialized applications MODULE-5 Specialized applications, PLL, operating principles, Monolithic PLL, applications.(5 hrs) Introduction, Basic DAC techniques, Binary Weighted Resistor DAC, R-2R Ladder DAC, Inverted R-2R DAC, D/A Specifications, A/D Converters - Flash type, Successive Approximation type, Dual Slope		5.Illustrate the DC and AC characteristics of an Op-Amp.(BL2)
DC and AC amplifiers, Summing Amplifiers, instrumentation amplifier, voltage to current converter, current to voltage converter, Integrator, Differentiator, Comparator, zero crossing detector, Schmitt Trigger, Square wave generator, triangular wave and Saw-tooth wave form generators.(10 hrs) At the end of the Module 3, students will be able to: 1. Design Circuits using Operational Amplifiers for various applications.(BL3) 2.Illustrate the various types of Wave forms as sine wave, square, triangular and Saw-tooth wave forms.(BL2) 3.Summarize the linearICapplicationshelpinICBasedElectronicProjectsDesign.(BL2) MODULE-4 Oscillators & Active Filters 9hours RC Phase shift and Weinbridge oscillators, Active filters: Classification of Filters, 1st and 2nd order LPF & HPF filters, Band pass, Band reject and All pass filters.(9 hrs) At the end of the Module 4, students will be able to 1. Demonstrate the basic operating principles of oscillator.(BL2) 2. Illustrate the various types of Filters. (BL2) 3. Explain First order Low Pass filter with Circuit diagram.(BL2) MODULE-5 Specialized applications 555 timer IC (Mono-stable& Astable operation) & its applications, PLL, operating principles, Monolithic PLL, applications.(5 hrs) Introduction, Basic DAC techniques, Binary Weighted Resistor DAC, R-2R Ladder DAC, Inverted R-2R DAC, D/A Specifications, A/D Converters - Flash type, Successive Approximation type, Dual Slope	1	MODULE -3 OP-AMP APPLICATIONS 10hours
MODULE-4 Oscillators& Active Filters Phours RC Phase shift and Weinbridge oscillators, Active filters: Classification of Filters, 1st and 2nd order LPF RC Phase shift and Weinbridge oscillators, Active filters: Classification of Filters, 1st and 2nd order LPF & HPF filters, Band pass, Band reject and All pass filters.(9 hrs) At the end of the Module 4, students will be able to 1. Demonstrate the basic operating principles of oscillator.(BL2) 2. 2. Illustrate the various types of Filters. (BL2) 3. 3. Explain First order Low Pass filter with Circuit diagram.(BL2) 10hours MODULE-5 Specialized applications 10hours 555 timer IC (Mono-stable& Astable operation) & its applications, PLL, operating principles, Monolithic PLL, applications.(5 hrs) Introduction, Basic DAC techniques, Binary Weighted Resistor DAC, R-2R Ladder DAC, Inverted R-2R DAC, D/A Specifications, A/D Converters - Flash type, Successive Approximation type, Dual Slope		current to voltage converter, Integrator, Differentiator, Comparator, zero crossing detector, Schmitt Trigger, Square wave generator, triangular wave and Saw-tooth wave form generators.(10 hrs) At the end of the Module 3, students will be able to: 1.Design Circuits using Operational Amplifiers for various applications.(BL3) 2.Illustrate the various types of Wave forms as sine wave, square, triangular and Saw-tooth
RC Phase shift and Weinbridge oscillators, Active filters: Classification of Filters, 1st and 2nd order LPF & HPF filters, Band pass, Band reject and All pass filters.(9 hrs) At the end of the Module 4, students will be able to 1. Demonstrate the basic operating principles of oscillator.(BL2) 2. Illustrate the various types of Filters. (BL2) 3. Explain First order Low Pass filter with Circuit diagram.(BL2) MODULE-5 Specialized applications 555 timer IC (Mono-stable& Astable operation) & its applications, PLL, operating principles, Monolithic PLL, applications.(5 hrs) Introduction, Basic DAC techniques, Binary Weighted Resistor DAC, R-2R Ladder DAC, Inverted R-2R DAC, D/A Specifications, A/D Converters - Flash type, Successive Approximation type, Dual Slope		3.Summarize the linearICapplicationshelpinICBasedElectronicProjectsDesign.(BL2)
& HPF filters, Band pass, Band reject and All pass filters.(9 hrs) At the end of the Module 4, students will be able to 1. Demonstrate the basic operating principles of oscillator.(BL2) 2. Illustrate the various types of Filters. (BL2) 3. Explain First order Low Pass filter with Circuit diagram.(BL2) MODULE-5 Specialized applications 555 timer IC (Mono-stable& Astable operation) & its applications, PLL, operating principles, Monolithic PLL, applications.(5 hrs) Introduction, Basic DAC techniques, Binary Weighted Resistor DAC, R-2R Ladder DAC, Inverted R-2R DAC, D/A Specifications, A/D Converters - Flash type, Successive Approximation type, Dual Slope		MODULE-4 Oscillators& Active Filters 9hours
1. Demonstrate the basic operating principles of oscillator.(BL2) 2. Illustrate the various types of Filters. (BL2) 3. Explain First order Low Pass filter with Circuit diagram.(BL2) MODULE-5 Specialized applications 555 timer IC (Mono-stable& Astable operation) & its applications, PLL, operating principles, Monolithic PLL, applications.(5 hrs) Introduction, Basic DAC techniques, Binary Weighted Resistor DAC, R-2R Ladder DAC, Inverted R-2R DAC, D/A Specifications, A/D Converters - Flash type, Successive Approximation type, Dual Slope		e de la companya de la company
1. Demonstrate the basic operating principles of oscillator.(BL2) 2. Illustrate the various types of Filters. (BL2) 3. Explain First order Low Pass filter with Circuit diagram.(BL2) MODULE-5 Specialized applications 555 timer IC (Mono-stable& Astable operation) & its applications, PLL, operating principles, Monolithic PLL, applications.(5 hrs) Introduction, Basic DAC techniques, Binary Weighted Resistor DAC, R-2R Ladder DAC, Inverted R-2R DAC, D/A Specifications, A/D Converters - Flash type, Successive Approximation type, Dual Slope	1	At the end of the Module 4, students will be able to
3. Explain First order Low Pass filter with Circuit diagram.(BL2) 10hours MODULE-5 Specialized applications 10hours 555 timer IC (Mono-stable& Astable operation) & its applications, PLL, operating principles, Monolithic PLL, applications.(5 hrs) Introduction, Basic DAC techniques, Binary Weighted Resistor DAC, R-2R Ladder DAC, Inverted R-2R DAC, D/A Specifications, A/D Converters - Flash type, Successive Approximation type, Dual Slope		
MODULE-5 Specialized applications 10hours 555 timer IC (Mono-stable& Astable operation) & its applications, PLL, operating principles, Monolithic PLL, applications.(5 hrs) Introduction, Basic DAC techniques, Binary Weighted Resistor DAC, R-2R Ladder DAC, Inverted R-2R DAC, D/A Specifications, A/D Converters - Flash type, Successive Approximation type, Dual Slope		
 555 timer IC (Mono-stable& Astable operation) & its applications, PLL, operating principles, Monolithic PLL, applications.(5 hrs) Introduction, Basic DAC techniques, Binary Weighted Resistor DAC, R-2R Ladder DAC, Inverted R-2R DAC, D/A Specifications, A/D Converters - Flash type, Successive Approximation type, Dual Slope 	<u> </u>	
PLL, applications.(5 hrs) Introduction, Basic DAC techniques, Binary Weighted Resistor DAC, R-2R Ladder DAC, Inverted R-2R DAC, D/A Specifications, A/D Converters - Flash type, Successive Approximation type, Dual Slope	<u> </u>	
DAC, D/A Specifications, A/D Converters - Flash type, Successive Approximation type, Dual Slope		
DAC, D/A Specifications, A/D Converters - Flash type, Successive Approximation type, Dual Slope	ļ	Introduction Basic DAC techniques Binary Weighted Resistor DAC R-2R Ladder DAC. Inverted R-2R
A / 1 1 Casado a fa han 1		
type, A/D specifications.(5 ms)		type, A/D Specifications.(5 ms)
At the end of the Module 5, students will be able to:		
1.Demonstrate the operating principles of IC 555 timer, IC PLL and applications.(BL2)		1 Demonstrate the ensurating minimized of IC 555 times IC DI L and applications (PI 2)

2.Explain the operating principle of PLL with block diagram(BL2)					
3.Summarize the Performance of the D to A and A to D converters.(BL2)					
4. Demonstrate the Switches for D/A converters. (BL2)					
5. Choose appropriate A/D and D/A converters for signal processing applications. (BL2)					
1: Low, 2-Medium, 3- High					

Term work:

Construct circuits using different linear ICs and verify their outputs using simulation software.

- Content beyond syllabus:
- 1. Introduction to TL082
- 2. 723 Voltage regulator
- 3 Fixed voltage regulators

Self-Study:

SNO	Торіс	Reference
1	Integrated Circuits &Differential Amplifiers	1. https://www.youtube.com/watch?v=bTsMRtftrK8&list=PLClvml io9stZC5Fxglq- Tr5Z_oMQZkh&index=23&t=0s (Integrated Circuits) https://www.youtube.com/watch?v=8VUBnkUcUtE (Differential amplifiers) https://www.youtube.com/watch?v=QzeH0exPi- c&list=PLB9Enjz2xxTqsgE2Wwoqclj0iA2TV9QxZ&index=29 (DC Analysis of DIBO) https://www.youtube.com/watch?v=9Zp6Uk0YsIU&list=PLB9Enjz2x xTqsgE2Wwoqclj0iA2TV9QxZ&index=19M(DIBO-Gain) https://www.youtube.com/watch?v=B9PJsJsK3mk (Current Mirror) https://www.youtube.com/watch?v=rxKXcth8ZVM&list=PLB9Enjz2x xTqsgE2Wwoqclj0iA2TV9QxZ&index=18 (DIBO-Resistanc)
2	Operational Amplifiers and Configurations	 <u>https://www.youtube.com/watch?v=BixWPRNuH9M&list=PLClvm</u> <u>mlKio9stZC5FxglqTr5Z_oMQZkh&index=1</u>(Operational Amplifier) <u>https://www.youtube.com/watch?v=jaD8VMjpjS4&list=PLClvml</u> <u>Kio9stZC5FxglqTr5Z_oMQZkh&index=9</u>(Differential Amplifier) <u>https://www.youtube.com/watch?v=elby2FWBkeE&list=PLClvm</u> <u>Kio9stZC5FxglqTr5Z_oMQZkh&index=8</u>(DC Characteristics) <u>https://www.youtube.com/watch?v=uVr0UaRPpGY&list=PLClvm</u> <u>IKio9stZC5FxglqTr5Z_oMQZkh&index=7</u>(AC Characteristics) <u>https://www.youtube.com/watch?v=r11lwWyumu8&list=PLClvm</u> <u>mlKio9stZC5FxglqTr5Z_oMQZkh&index=6</u>(Voltage series feedback amplifier) <u>https://www.youtube.com/watch?v=3Wd6sWIH2vU&list=PLClvm</u> <u>mlKio9stZC5FxglqTr5Z_oMQZkh&index=5</u> (Voltage shunt feedback amplifier)

		7. https://www.youtube.com/playlist?list=PLm_MSClsnwm91RcON
		okvGw2dRxG-s_nM-
		https://www.youtube.com/playlist?list=PLClvmlKio9stZC5Fxglq-
		Tr5Z_oMQZkh
		1.https://www.youtube.com/watch?v=Pfn2aOnW8yo&list=PLClvml
		Kio9stZC5FxglqTr5Z_oMQZkh&index=4(Instrumentation Amplifier)
		2.https://www.youtube.com/watch?v=sz6OyNG2Nm0&list=PLClvml
		Kio9stZC5Fxglq- Tr5Z oMQZkh&index=11 (Operational Amplifier
		Applications& Filters)
		https://www.youtube.com/watch?v=4DgnGoGiYew&list=PLClvmlKio
		9stZC5Fxglq- Tr5Z oMQZkh&index=20 (Comparators)
3	Applications of Op-	https://www.youtube.com/watch?v=PYEOTiU6qQg&list=PLClvmlKig
	Amps	9stZC5Fxglq- Tr5Z oMQZkh&index=16 (Sample &Hold,Schmitt
		Trigger)
		https://www.youtube.com/watch?v=J_rLtPiu7kI&list=PLClvmlKio9st
		ZC5Fxglq- Tr5Z oMQZkh&index=17
		(Multivibrators)
		https://www.youtube.com/playlist?list=PLClvmlKio9stZC5Fxglq-
		Tr5Z oMQZkh
		https://www.youtube.com/watch?v=M3yI0byagKc&list=PL1hgL6v9r
		Ng4tKIAW7p4vn26yRyu8XdfJ&index=28&t=0s (Introduction to
		Oscillator)
		https://www.youtube.com/watch?v=8eLoIUGSXns&list=PL1hqL6v9r
		Ng4tKIAW7p4vn26yRyu8XdfJ&index=28 (RcPhas shift Oscillator)
		https://www.youtube.com/watch?v=YH1zbPA_i2Y
4	Oscillator & Active	(Wein bridge Oscillator-NPTEL).
	Filters.	https://www.youtube.com/watch?v=YZnd4IJBa0I&list=PLClvmlKio9s
		tZC5FxglqTr5Z_oMQZkh&index=14
		(First order Filters)
		https://www.youtube.com/watch?v=uj4b2O4XVVE&list=PL1hqL6v9
		rNg4tKIAW7p4vn26yRyu8XdfJ&index=26 (Band Pass and Band
		Reject Filters)
		https://www.youtube.com/watch?v=CGj8YpEn9iU&list=PLClvmlKio9
		<pre>stZC5FxglqTr5Z_oMQZkh&index=10 (555 Timers)</pre>
		https://www.youtube.com/watch?v=CGj8YpEn9iU&list=PLClvmlKio9
		<pre>stZC5FxglqTr5Z_oMQZkh&index=10 (PLL & VCO)</pre>
5		https://www.youtube.com/watch?v=-
	Specialized	FPiAjbJmPl&list=PLClvmlKio9stZC5FxglqTr5Z_oMQZkh&index=21
	Applications	(PLL Applications)
		https://www.youtube.com/playlist?list=PLm_MSClsnwm91RcONoky
		<u>Gw2dRxG-s_nM-</u>
		https://www.youtube.com/watch?v=86gPOMaZQCs&list=PLClvmlKi
1		olet7CEEvala TrE7 oMO7kb8 index=10
		o9stZC5FxglqTr5Z_oMQZkh&index=19

 Ramakanth A. Gayakwad, "Op-Amps & Linear ICs", 4th Edition, PHI, 2002
 Choudhary D. Roy, Shail B. Jain, Linear Integrated Circuits, New Age International (p) Ltd, (2018-19 Session), 5th Edition (Paperback)

Reference Book(s):

1. Analog Electronics, L.K. Maheshwari, Laxmi Publications, PHI, 2005

- 2. D.A. Bell, Operational Amplifiers and Linear ICs. Oxford University Press, 3rd edition.
- 3. R.F.Coughlin& Fredrick Driscoll"Op-Amps & Linear Integrated Circuits"6th Edition, PHI.
- 4.F. Sergio, Design with Op Amps & Analog Integrated Circuits. Mcgraw Hill ,1997
- 5. D. William, Operational Amplifiers with Linear Integrated Circuits. Prentice Hall, 2004
- 6. Analog Electronics, I.G.Nagrath, PHI 2 edition (13 September 2013)

7. K.LalKishore, "Operational Amplifiers and Linear Integrated Circuits", Pearson Education India, 2009.

Online Resources:

1.<u>https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-002-circuits-and-electronics-spring-2007/video-lectures/lecture-20/-Op-Amps</u>

- 2. <u>https://www.youtube.com/watch?v=EGmreVQ-yNM</u>-555 Timer
- 3. <u>https://www.youtube.com/watch?v=Q5dC9TbzR9k</u>-PLL
- 4. <u>https://www.youtube.com/channel/UCsnMUwuYBQPFND6C_ybc9-g/videos</u>
- 5. <u>https://www.youtube.com/watch?v=16MkYKdkDkw</u>-Integrated Circuits

6.<u>https://www.youtube.com/playlist?list=PLXMC-WkvZqjPnkYMaTtTTf_JhFbPR2MQa</u>-IC555-DAC-ADC

7.<u>https://www.youtube.com/playlist?list=PLnPkMfyANm0xpPD56ExVw8FEocT29wmIj</u>-Integrated Circuits and applications

8. <u>https://www.youtube.com/watch?v=BVJ7ri-vDh4</u>-Digital Logic Families

9. <u>https://www.youtube.com/watch?v=lxjauuQnWmE</u>-Second order Active filters

10https://www.youtube.com/playlist?list=PLnPUHuqVn2sddfG-BFFHe25ZBtS5PxTi6

11<u>https://www.youtube.com/watch?v=8VUBnkUcUtE</u>-Differential Amplifier DC and Ac analysis

12.https://www.youtube.com/watch?v=QsxN1VWBXps&list=PLPHhJ2jrOrwxBOZrM4-

xMxT3St2eYK3YY&index=2&t=0s_Linear Integrated Circuits

13.<u>https://www.youtube.com/playlist?list=PL4BY6TEAkoMvdIikr2NGLnuuGhctgosnQ</u>-Linear Integrated Circuits

Web References:

1. https://www.tutorialspoint.com/linear integrated circuits applications/index.htm

2.<u>https://books.google.co.in/books/about/Linear_Integrated_Circuits html?id=aByz—9D63wC</u> 3. <u>https://nptel.ac.in/courses/117/107/117107094/</u>

4. https://www.oreilly.com/library/view/linear-integrated-circuit9789332558250/

5.http://www.nptel.ac.in/courses/Webcourse-

contents/IITROORKEE/Analog%20circuits/index.htm

6.<u>https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-002-circuits</u>

and-electronics-spring-2007/

	Ν	ARAYAN	A ENGIN	EERING	COLLEGE	: NELLO	RE	
20EC2010	Μ	ICROPRO	CESSOR	S AND MI	CROCON	TROLLEE	RS	R20
Semester	Н	lours / Wee	k	Total	Credit	redit Max Marks		
	L	Т	Р	hrs	С	CIE	SEE	TOTAL
V	3	0	0	48	3	40	60	100
Pre-requis	ite: Know	ledge on sv	vitching the	ory and log	gic design,	basics of c	omputer or	ganisation,
architecture	and basic p	orogrammi	ng techniqu	es.				
Course Ob	jectives:							
1. To :	study the in	ternal arch	itecture, int	errupts & r	nemory org	anization o	f 8086 mici	roprocessor.
2. To	understand	the program	nming conc	cepts using	8086.			
3. To 1	impart the b	basics of th	e MSP 430	and its var	iants.			
4. To	understand	programmi	ng techniqu	les using ir	terrupts, in	struction se	t & addres	sing modes
				-	of MSP 43			C
Course Ou	tcomes: A	fter succes	sful comp	letion of th	ne course, t	he student	will be abl	le to:
CO 1	Interpret	the workin	g principles	of 8086 m	icro proces	sor . (BL-2)		
CO 2	Develop a	ssembly la	nguage pro	grams usin	g instructio	n set in 808	36 micropro	ocessor. (BL-
	3)							
CO 3	Compare various versions of MSP430 based on applications. (BL-2)							
CO 4	Summariz (BL-2)	Summarize the interrupt types, addressing modes & memory organization of MSP430. (BL-2)						
CO 5	Implemen	it serial cor	nmunicatio	n protocol	s using MSP	9430. (BL-3)		

					C	CO-PC) Map	ping						
	PO												PSO	
CO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO
	I	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	1		1										1	
CO2	2	2		1	2									1
CO3	1	1	1										1	2
CO4	2	2	1	1	2									1
CO5	1		1	1	1								1	
					1: Lov	w, 2-M	ledium	1, 3- Hi	igh					

-COURSE CONTENT										
MODULE – 1	MODULE – 1 8086 MICROPROCESSOR 10 h									
Introduction, Microprocessor Evolution, Intel 8086 Microprocessor: Features block diagram, Register Organization, Memory organization, Interrupts and Interrupt Vector Table.										
At the end of the	e Module 1, students will be able to:									
1. List the	features of 8086 microprocessor.(BL-1)									
2. Explain	the architecture of 8086 microprocessor.(BL-2)									
3. Describe the memory organization of 8086 microprocessor.(BL-1)										
4. Explain the concept of interrupt handling of 8086.(BL-2)										
MODULE 2	PROGRAMMING WITH 8086	10 h								
Instruction Formats -Addressing Modes-Instruction Set of 8086, Assembler Directives, Macros and										

Procedures. Simple ALP's.

MODULE-3	LOW POWER RISC MSP430	10 h
Low power RIS	C MSP430 block diagram, features and architecture, Variants of the MSP430 f	amily viz.
MSP430x2x, M	SP430x4x, MSP430x5x and their targeted applications, Register set.	
At the end of the	e Module 3, students will be able to:	
1. List the	features of MSP 430 microcontroller.(BL-1)	
-	the architecture of MSP 430 microcontroller.(BL-2)	
3. Compare	e variants of MSP 430. (BL-2)	
MODULE-4	ADDRESSING MODES & INTERRUPTS OF MSP430	8 h
Addressing mo	des, Instruction set, Memory address space; I/O ports pull up/down resistors	concepts,
Interrupts and ir	nterrupt programming.	_
At the end of the	e Module 4, students will be able to:	
1. Apply c	lata in MSP 430 programming using addressing modes. (BL-3)	
2. Explain	the instruction set of MSP 430. (BL-2)	
3. Do prog	gramming using interrupts.(BL-3)	
4.Lists inter	rupt types supported by MSP430. (BL-2)	
MODULE-5	ON-CHIP PERIPHERALS OF MSP 430	10 h
Watchdog time Communication	erals (Analog & Digital), ADC, Comparator and data transfer using DMA or er, System clocks, Timers &Real Time Clock (RTC), Low power mode Protocols: UART, USB, I2C & SPI and implementation using MSP430.	
	e Module 5, students will be able to:	
	on chip peripherals of MSP 430 microcontroller.(BL-1)	
	MSP430 clock system. (BL-2) the operation of watchdog timer.(BL-2)	
-	ne concept of Real Time Clock (RTC). (BL-2)	
<u>^</u>	exatures of UART, USB, SPI, and I2C. (BL-1)	
	ne UART, I2C, SPI interface using MSP430. (BL-2)	
-		
_	Total hours: 4	8 Hours
	e Module 2, students will be able to:	
-	different addressing modes in 8086. (BL-2)	
^	Ferent instruction set of 8086 (BL-2)	
3. Implement	ALPs using 8086 (BL-3)	

Content Beyond syllabus:

- 1. ARM processor architecture: Features, Block diagram, pin diagram.
- 2. TIVA controller architecture: Features, Block diagram, pin diagram.

Self-Study:

S.No	Module	Reference
1	8086 processor	https://electronicsdesk.com/8086-microprocessor.html
		https://circuitglobe.com/difference-between-8085-and-8086-

		microprocessor.html
2	Programming With	http://www.ee.hacettepe.edu.tr/~alkar/ELE414/dirz2005/w6-
	8086	414-[2005].pdf
3	Low Power RISC	http://www.ece.utep.edu/courses/web3376/Notes_files/ee3376-
	MSP 430	isa.pdf
4	Addressing modes &	https://cnx.org/contents/auotnt@1/Addressing-modes
	interrupts of MSP430	
5	On chip peripherals	http://learncontrollers.blogspot.com/2018/02/timer-of-
		msp430.html
		https://www.ti.com/lit/ml/slap117/slap117.pdf

- 1. "Microprocessor and Microcontrollers", N. Senthil Kumar, M. Saravanan, S. Jeevanathan, Oxford Publishers. Second Edition, 2016
- 2. MSP430 microcontroller basics. John H. Davies, Newnes Publication, I st Edition, 2008
- 3. "The X86 Microprocessors, Architecture, Programming and Inerfacing", Lyla B.Das ,Pearson Publications,2010

Reference Book(s):

- 1. Advanced microprocessors & microcontrollers", K M Burchandi & A K Ray, 3 rd edition, 2013
- 2. "Microprocessor and Interfacing: Programming and Hardware", Douglas V.Hall, McGrawHill
- 3. "8086 microprocessor: Programming and Interfacing the PC", Kenneth Ayala Cengage Learning.

Online Resources / Web References:

- 1. https://nptel.ac.in/courses/108/103/108103157/
- 2. https://training.ti.com/msp430-ultra-low-power-microcontroller-overview
- 3. <u>https://www.tutorialspoint.com/microprocessor/index.htm</u>
- 4. <u>http://www.te.kmutnb.ac.th/~ptt/lectures/01_Microprocessors/03_MSP430/05_Tutorialv0_3.pdf</u>

	ľ	NARAYAN	NA ENGIN	EERING	COLLEGI	E:NELLO	RE			
20EC2505	Α	NALOG A	ND DIGI	FAL COM	MUNICA'	FIONS LA	B	R20		
Semester	Н	lours / Wee	k	Total	Credit		Max Mar	ks		
	L	Т	Р	hrs	С	CIE	SEE	TOTAL		
V	0	0	3	36	1.5	40	60	100		
Pre-requisite: A course on Analog and Digital Communications.										
Course Ob	Course Objectives:									
	1. To design and test communication circuits for analog modulation and demodulation									
	schem	es.				-				
	2. To familiarize the concept of antenna parameters and their measurement process.							process.		
	3. To des	ign and tes	t digital mo	dulation ar	d demodula	ation techn	iques.			
	4. To write and execute programs in MATLAB to implement various modulation									
	techni	ques.			-					
	5. To und	lerstand cha	annel codin	g and equa	lization tecl	nnique				
Course Ou	tcomes: A	fter succes	sful comp	letion of th	ne course, t	he student	will be abl	e to:		
CO 1	Experime	nt with va	rious analo	g modulat	ion and de	modulatio	n techniqu	es		
CO 2	Analyze d	Analyze different pulse modulation techniques.								
CO 3	Analyze d	igital modu	llation & de	modulatio	n technique	es.				
CO 4	Simulate	digital mod	ulation & d	emodulatio	on techniqu	es using M	IATLAB.			

					C	CO-PC) Map	ping						
				PO								PS	PSO	
СО	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	3	2						2	2		2	3	3
CO2	3	3							2	2		2	3	3
CO3	3	3	2						2	2		2	3	3
CO4	3	3	2						2	2		2	2	2
		•	•		1: Lov	w, 2-N	ledium	, 3- Hi	gh	•				

COURSE CONTENT	CO				
Task-1: AMPLITUDE MODULATION AND DEMODULATION					
Objective: To study the function of Amplitude Modulation & Demodulation (under modulation, perfect modulation & over modulation) and also to calculate the modulation index.	CO 1				
Task-2: FREQUENCY MODULATION AND DEMODULATION					
Objective: To study the functioning of Frequency Modulation & Demodulation and to calculate the modulation index.	CO 1				
Task-3: PULSE AMPLITUDE MODULATION & DEMODULATION					

Objective:			
· · · · · · ·			
To Perform Pulse amplitude Modulation and Demodulation and to draw the observed waveforms.	CO 2		
TASK-4: PULSE WIDTH AND POSITION MODULATION & DEMODULATION			
Objective:			
To implement the Pulse Width and Position Modulation & Demodulation circuits and to draw the	CO 2		
observed waveforms.			
Task-5: PRE-EMPHASIS AND DE-EMPHASIS			
Objective:			
To study the functioning of Pre-Emphasis and De-Emphasis circuits.	CO 1		
Task-6: PULSE CODE MODULATION AND DEMODULATION			
Objective:	a a		
To Study & Understand the operation of the Pulse code modulation & Demodulation.	CO 2		
Task-7: DIFFERENTIAL PULSE CODE MODULATION AND DEMODULATION			
Objective:			
To generate the differential Pulse code modulation & Demodulation using MATLAB	CO 2		
Task-8: DELTA MODULATION AND DEMODULATION			
Objective:			
To transmit an analog message signal in its digital form and again reconstruct back the original	CO 2		
analog message signal at receiver by using Delta modulator.			
Task-9: HUFFMAN CODING			
Objective:	CO 3		
To generate Huffman coding using Matlab.			
Task -10: FSK MODULATION AND DEMODULATION			
Objective:	CO3		
Objective:	CO 3		
Objective: To generate and demodulate frequency shift keyed (FSK) signal using MATLAB. Task-11: PSK MODULATION AND DEMODULATION	CO 3		
Objective: To generate and demodulate frequency shift keyed (FSK) signal using MATLAB. Task-11: PSK MODULATION AND DEMODULATION Objective:			
Objective: To generate and demodulate frequency shift keyed (FSK) signal using MATLAB. Task-11: PSK MODULATION AND DEMODULATION Objective:	CO 3 CO 3		
Objective: To generate and demodulate frequency shift keyed (FSK) signal using MATLAB. Task-11: PSK MODULATION AND DEMODULATION Objective: To generate and demodulate phase shift keyed (PSK) signal using MATLAB Task-12: GENERATION OF QPSK USING MATLAB			
Objective: To generate and demodulate frequency shift keyed (FSK) signal using MATLAB. Task-11: PSK MODULATION AND DEMODULATION Objective: To generate and demodulate phase shift keyed (PSK) signal using MATLAB Task-12: GENERATION OF QPSK USING MATLAB Objective:			

Task-13: FREQUENCY DIVISION MULTIPLEXING USING MATLAB	
Objective:	
To study and simulate Frequency division multiplexing and draw its waveforms.	CO 4
TASK-14: CHANNEL EQUALIZATION ALGORITHM USING MATLAB	

Objective:

To simulate the Zero Forcing Equalizer.

CO 4

Tools / Equipment Required:

1 Regulated Power Supply (0-30) V

- 2. CROs (0-20)MHz
- 3. Function Generators (0-3) MHz
- 4. RF Signal Generators (0-1000) MHz
- 5. Multimeters
- 6. Required Electronic components(active and passive) for the design of experiments from 1-7
- 7. Radio Receiver Demo kits or Trainers.
- 8. RF power meter frequency range 0 1000MHz
- 9. Spectrum Analyzer
- 10. RPS 0 30 V
- 11. CROs 0 20 M Hz.
- 12. Function Generators 0 1 M Hz
- 13. RF Generators (3 Nos.) 0 1000 M Hz.
- 14. Multimeters
- 15. Lab Experimental kit for Pulse Code Modulation (Experiment No.3 of part –A)
- 16. Required Electronic Components (Active and Passive) which include required ICs

17. Arbitrary Wave form generators/ PNS generators -2 Nos. (to generate digital data at required data rates)

18. Licensed MATLAB software for 30 users with required tool boxes.

Virtual Labs:

https://www.etti.unibw.de/labalive/index/analogmodulation/ http://vlab.amrita.edu/index.php?sub=59&brch=163 https://www.etti.unibw.de/labalive/index/digitalmodulation/ http://vlab.amrita.edu/index.php?sub=59&brch=163

Self-Study:

S.NO	Торіс	CO	Reference
1	Amplitude modulation and demodulation	CO 1	https://youtu.be/cfwwxYvUYEg
2	Pre-emphasis and De- emphasis circuits	CO2	https://youtu.be/OUrp4unGeDg
3	Delta modulation and demodulation	CO 3	https://youtu.be/lBZrY7r5TRo
4	Digital keying techniques	CO4	https://www.youtube.com/watch?v=gmDBP-1QtiQ
5	Huffman coding using MATLAB	CO 5	https://youtu.be/uTdBFr8Fn-w

1. B. P. Lathi, "Modern Digital and Analog Communication Systems," 3rd Edition, Oxford Univ. press, 2006.

2. John Wiley & Sons Simon Haykin, "Communication Systems,", 3rd Edition, 2010.

3. Sham Shanmugam, "Digital and Analog Communication Systems", Wiley-India edition, 2006.(edition) 4. R.P. Singh and S. Sapre, "Communication Systems: Analog and Digital", 3rd edition, Tata McGraw-Hill, 2017.

5. J.S. Chitode, "Digital Communication:, Technical Publications, Pune.

Reference Book(s):

1. Bruce Carlson, & Paul B. Crilly, "Communication Systems – An Introduction to Signals & Noise in Electrical Communication", 5th Edition, McGraw-Hill International Edition, 2010.

2. Herbert Taub & Donald L Schilling, "Principles of Communication Systems", 3rd Edition, Tata McGraw- Hill, 2009.

3. George Kennedy and Bernard Davis, "Electronics & Communication System", TMH, 2004.(edition).

4. Digital communications, 5/e,2008,J G Proakis, McGraw Hill, New delhi.

5. Digital communications, 2/e, 2007, Bernard Sklar, Pearson edition, New delhi.

Web References:

- 1. <u>https://www.youtube.com/watch?v=S2vzyk6BXtA</u> (Square law modulator for AM Generation)
- 2. <u>https://www.youtube.com/watch?v=Q5dC9TbzR9k</u> (Phase Locked Loop)
- 3. <u>https://www.youtube.com/watch?v=zy4DIBYjnFM</u> (Frequency Division Multiplexing)
- 4. <u>https://www.youtube.com/watch?v=ij760lCUtfw</u> (QPSK)
- 5. <u>https://www.youtube.com/watch?v=dTPzZ3X-wLA</u> (Linear Block Codes)
- 6. <u>https://www.tutorialspoint.com/analog_communication/analog_communicati</u>on
- 7. https://www.sciencedirect.com/topics/engineering/analog-communication
- 8. <u>http://complextoreal.com/tutorials/</u>
- 9. <u>https://www.tutorialspoint.com/digital_communication/digital_communication/digital_communication_digital_modulation_techniques.htm</u>

10. <u>https://www.electronicdesign.com/technologies/communications/article/217</u> 98737/understanding-modern-digital-modulation-techniques

https://www.tutorialspoint.com/principles_of_communication/principles_of_communication_noise_.htm

NARAYANA ENGINEERING COLLEGE:NELLORE										
20EC2506	MICROPROCESSORS & MICROCONTROLLERS LAB R20									
Semester	Hours / Week			Total	Credit	Max Marks				
	L	Т	Р	hrs	С	CIE	SEE	TOTAL		
V	0	0	3	36	1.5	40	60	100		
Pre-requisite: Knowledge in C language										
Course Objectives:										
1.	To gain knowledge on various tools for applying it to perform a specific task with									
	microprocessors & microcontrollers.									
2.	To prepare students for developing of real time embedded systems.									
3.	To prepare students for project management.									
Course Ou	tcomes: A	fter succes	sful comp	letion of th	ne course, t	he student	will be abl	le to:		
CO 1	Execute assembly language programs using 8086 microprocessor.									
CO 2	Examine interfacing and programming GPIO ports in C using MSP430.									
CO 3	Design and implement MSP430 microcontroller based systems.									

CO-PO Mapping														
CO	PO										PSO			
	PO	PO	PO	PO	PO	РО	PO	PO	PO	PO	PO	PO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	2	2			2					1	1			1
CO2		2	2		2							2	1	1
CO3		2	2		2							2		1
	1: Low, 2-Medium, 3- High													

COURSE CONTENT						
PART-A: 8086 Microprocessor Programs using MASM/8086 microprocessor kit.						
Task 1 : Arithmetic operations						
Objective: Use Assembly language programming to perform arithmetic operations such as	CO 1					
 A. Addition of N 16-bit numbers B. Subtraction of N 16-bit numbers 						
C. 8-bit by 8-bit multiplication operation						
D. 16-bit by 16-bit multiplication operation						
E. Unsigned division operation						
F. Signed division operation						
Task 2: Logical operations						
Objective: Use Assembly language programming to perform bit by bit logical operations						
such as						
A. AND, OR, NOT & XOR operations of two 8-bit numbersB. Shift & Rotate operations						
Task 3: String operations						

Objective: Use Assembly language programming to perform various string operations such	CO 1					
as						
A. Move a block of string byte						
B. Compare two strings						
C. Reverse of a string						
D. Find length of a string						
Task 4 : Code Converters						
Objective: Use Assembly language programming to convert one form of binary code into another form such as	CO 1					
A. BCD to ASCII code conversion						
B. Packed BCD to unpacked BCD						
PART-B: Embedded C Experiments using MSP430 Micro-controller						
Task 5 : Introduction to MSP430 launch pad and Programming Environment.						
Objective: Demonstrate MSP EXP430G2 launch pad & Code Composer Studio (CCS) to develop	CO 2					
programs.						
Task 6 : Interfacing and programming GPIO ports						
Objective: Interfacing and programming GPIO ports in C using MSP430.	CO 3					
	005					
1. Blinking LEDs individually (Red / Green)						
2. Blinking LEDs together (Red& Green)						
3. Blinking LEDs alternately (Red& Green)						
Task 7: Read input from switch & glow LED						
Objective: Blink the onboard, GREEN / RED LED (connected to P1.0) whenever button	CO 3					
(connected to P.1.1) is pressed and OFF when released using GPIO.						
Task 8: Configure Timer Block for Signal Generation						
Objective: Signal generation using interrupt programming technique.						
Task 9: Interrupt programming						
Objective: Interrupt programming examples through MSP430 GPIOs.						
Task 10: Interfacing potentiometer						
Objective: Interfacing potentiometer with MSP430 to check the operation based on applied resistance.	CO 3					
Task 11: Configure Watchdog Timer In Watchdog Mode & amp; Interval Mode						
Objective: Configure watchdog timer module in watchdog and Interval time mode and observe its output	CO 3					
Additional Experiments:						
Task 12: PWM generation						
Objective: Pulse Width Modulated signal generation using timer on MSP430 GPIO.						
ADDITIONAL EXPERIMENTS						
Task 13: Programming with 8086 microprocessor						
Objective: Use assembly language programming to perform rotate operations with 8086 microprocessor.	CO 1					
Task 14: Programming to find factorial of given number						

Objective: Use assembly language programming to find factorial of given 8-bit number using CO1 procedures with 8086 microprocessor.

Virtual Labs:

- 1. <u>http://vlabs.iitb.ac.in/vlabs-dev/labs_local/microprocessor/labs/explist.php</u>
- 2. https://github.com/jishanshaikh4/Microprocessor-Virtual-Lab
- 3. <u>http://www.msec.ac.in/pages/view/mpl</u>

Self-Study:

Contents to promote self-Learning:

SN	Торіс	Reference
0		
1	MASM	https://www.youtube.com/watch?v=m4Cxi8qhKd4
2	Assembly language programming	https://www.youtube.com/watch?v=zEuvNYe7WG
	with emulator 8086	<u>0</u>
3	MSP430 launchpad	https://www.youtube.com/watch?v=V0GrBUbomD
		A

Text Book(s):

- "Microprocessor and Microcontrollers", N. Senthil Kumar, M. Saravanan, S. Jeevanathan, Oxford Publishers. 1 st Edition, 2010
- 2. MSP430 microcontroller basics. John H. Davies, Newnes Publication, I st Edition, 2008
- 3. Advanced microprocessors & microcontrollers", A K Ray, K M Burchandi 2nd edition.

Reference Book(s):

- 1. Introduction to Assembly Language Programming From 8086 to Pentium Processors by Dandamudi, Sivarama P.
- 2. "The X86 Microprocessors, Architecture, Programming and Inerfacing", Lyla B.Das ,Pearson Publications,2010
- 3. "8086 microprocessor: Programming and Interfacing the PC", Kenneth Ayala, Cengage Learning

Web References:

- 1. <u>https://www.geeksforgeeks.org/assembly-language-program-8086-microprocessor-divide-16-bit-number-8-bit-number/?ref=lbp</u>
- 2. https://www.elprocus.com/8086-assembly-language-programs-explanation/
- 3. https://processors.wiki.ti.com/images/5/52/03_-_MSP430_Programming.pdf
- 4. https://www.accessengineeringlibrary.com/content/book/9780071830034/chapter/chapter6
- 5. http://209.211.220.205/vlabiitece/mi/labsMI.php
- 6. <u>https://www.srmist.edu.in/content/microprocessor-lab-1</u>

	Ň	ARAYAN	A ENGINI	EERING C	OLLEGE	:NELLOF	RE							
20EC2011			Digital I	Design usin	g HDL			R20						
Semester	Н	lours / Wee	ek	Total	Credit		Max Mar	ks						
Semester	L	Т	Р	hrs	С	CIE	SEE	TOTAL						
VI	3	0	0	48	3	40	60	100						
Pre-requisi	ite: Conce	pts of Swite	ching Theo	ry and Log	gic Design.									
Course Ob														
1.	To describe, design, and simulate digital circuits using the Verilog Hardware description													
	language.													
	To understand behavioural and RTL modelling of digital circuits													
	To verify timing constraints of digital circuits, through the Verilog HDL													
4.	•	size, digital		0		t board								
5.	To Implem	ent digital	circuits on a	a developm	ent board									
~ ~ ~		-												
Course Ou	tcomes: A	fter success	sful compl	letion of th	e course, t	ne student	will be ab	le to:						
CO 1	Interpret	digital desig	n flow used	d in chip de	sign Flow.	(BL-2)								
CO 2	Model sir	nple digital	circuits us	ing Verilog	HDL. (BL-3	3)								
CO 3	Simulate	digital circ	uits using	Verilog HD	L.(BL-3)									
CO 4	Analyze s	imulation t	echniques	in behavio	oral and Sv	vitch level	models of	digital						
	circuits. (BL-3)												
CO 5	Model dig	ital circuits	using Verile	og tasks an	d directives	5.(BL-3)								

	CO-PO Mapping														
CO					COU	RSE (CONT	ENT					PSO		
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	
CO1	3	3	2		3								2	2	
CO2	3	3	1		3								2	1	
CO3	3	3	1		3								2	2	
CO4	3	3	1		3								3	1	
CO5	3	3	3		3								3	3	
					1: Lov	w, 2-M	ledium	n, 3- Hi	igh						

COURSE CONTENT

MODULE -1

Introduction to digital design

10hrs

INTRODUCTION TO DIGITAL DESIGN. Introduction to hardware descriptive language (HDL). Difference between computer programming languages and HDLs Examples and HDL based digital design flow based on FPGA and CPL

Verilog as HDL, Levels of Design Description, Concurrency, Simulation and Synthesis using EDA tools

At the end of the Module 1, students will be able to:

- 1. What is importance of HDL (Hardware Descriptive Language) (BL-2)
- 2. Describe difference between concurrent and sequential programming (BL-2)
- 3. Explain Digital design and implementation flow (BL-2)

MODULE -2 **Introduction To Verilog** 9hrs Language Constructs And Conventions: Introduction, Keywords, Identifiers, White Space Characters, Comments, Numbers, Strings, Logic Values, Strengths, Data Types, Scalars and Vectors, Parameters, Operators.

Gate Level Modeling: Introduction, AND Gate Primitive, Module Structure, Other Gate Primitives, Illustrative Examples, Tri-State Gates, Array of Instances of Primitives, Additional Examples, Design of Flipflops with Gate Primitives, Delays, Strengths and Contention Resolution, Net Types, Design of Basic Circuits.

At the end of the Module 2, students will be able to:

- 1. Explain simulation and synthesis models of Digital circuits (BL-2)
- 2. Describe simulation techniques(BL-2)
- 3. Explain How to create test bench (BL-2)
- 4. Model digital circuits in Gate level using Verilog (BL-3)
- 5. Explain Gate Primitives used in Verilog (BL-2)

MODULE-3

Verilog Modeling -1

10hrs

Data Flow Level Modeling: Introduction, Continuous Assignment Structures, Delays and Continuous Assignments, Assignment to Vectors, Operators.

Behavioral Modeling: Introduction, Operations and Assignments, Functional Bifurcation, Initial Construct, Always Construct, Examples, Assignments with Delays, Wait construct, Multiple Always Blocks, Designs at Behavioral Level, Blocking and Non-blocking Assignments, The case statement, Simulation Flow. *if* and *if*-else constructs, assign-deassign construct, repeat construct, for loop, the disable construct, whileloop, forever loop, parallel blocks, force-release construct, Event.(6h)

At the end of the Module 3, students will be able to:

- 1. Model digital circuits in data flow style (BL-3)
- 2. Explain High level abstraction of digital systems with behavioral modeling of systems(BL-2)
- 3. Apply concepts behavioral constructs like 'always' ,'initial', 'if', 'if-else', 'case'..etc to describe a digital system (BL-3)

MODULE-4

Verilog Modeling -2

Switch Level Modeling: Introduction, Basic Transistor Switches, CMOS Switch, Bi-directional

Gates, Time Delays with Switch Primitives, Instantiations with Strengths and Delays, Strength Contention with Tri-reg Nets.

Functions, Tasks, And User-Defined Primitives: Introduction, Function, Tasks, User- Defined Primitives (UDP), FSM Design (Moore and Mealy Machines).(4h)

At the end of the Module 4, students will be able to:

1.Describe low level abstraction of digital systems with switch modeling of systems (BL-2)

2. Explain Switch level primitives (BL-2)

3.Describe the importance of tasks and functions (BL-2)

4. model digital systems using User- Defined Primitives (UDP) (BL-3)

MODULE-5

Tasks and Functions

11hrs

8hrs

System Tasks, Functions And Compiler Directives: Introduction, Parameters, Path Delays, Module Parameters, System Tasks and Functions, File-Based Tasks and Functions, Compiler Directives, Hierarchical Access, Verilog models for memories and buses: Static RAM memory, UART Design

At the end of the Module 5, students will be able to:

- 1. Explain the concept of FSM (BL-2)
- 2. Learn compiler directives. (BL-2)
- 3. Describe the usage of functions and tasks in packages(BL-2)

Total hours: 48 hours

Term work:

1. Preparation of power-point slides, which include videos, animations, pictures, graphics for better understanding theory and practical work

2.Design and implement digital circuit that Controlling LEDs with Switches using FPGA.

Content beyond syllabus:

1. Vertex FPGA structure

Self-Study:

Contents to promote self-Learning:

SN O	Торіс	Reference
		http://vlsibyjim.blogspot.com/2015/03/vlsi-design-
	Introduction To	<u>flow.html</u>
1	Digital Design	https://www.tutorialspoint.com/vlsi_design/vlsi_designdigit al_system.htm
		https://www.youtube.com/watch?v=Abld-fSxjNM
		https://freevideolectures.com/course/3696/advanced-vlsi- design/23
	Introduction To	https://www.youtube.com/watch?v=bapXMc48Ma4&featur
2	Verilog	<u>e=youtu.be</u>
		https://bt.nitk.ac.in/c/19b/cs201/index.html
		https://nptel.ac.in/courses/117/106/117106092/
		https://www.chipverify.com/verilog/verilog-gate-level-
	Gate Level And	examples
_	Gate Level And	https://technobyte.org/gate-level-modeling-in-Verilog/
3	Data Flow Level	https://www.youtube.com/watch?v=aGcLzYzxTKI
	Modeling	https://technobyte.org/dataflow-modeling-verilog/
		https://www.youtube.com/watch?v=W2XH-KtO930
		https://technobyte.org/behavioral-modeling-verilog/
	Behavioral And	https://www.youtube.com/watch?v=QzhFeDVehpY
4	Switch Level	https://www.chipverify.com/verilog/verilog-switch-level-
	Modeling:	modeling
		https://www.youtube.com/watch?v=vwAhcO0q3l4
	Functions, Tasks	http://www.asicguru.com/verilog/tutorial/system-tasks-and-
5	Compiler	<u>functions/68/</u> http://www.ucrilog.conorte.com/source/urg00008.htm
	Directives	http://www.verilog.renerta.com/source/vrg00008.htm https://www.voutube.com/watch?v=a3gyvyHeNEOw
	Directives	https://www.youtube.com/watch?v=a3qvwHeNEQw

	Memory,	https://alchitry.com/blogs/tutorials/how-does-an-fpga-work	
6	Implementation Of	https://www.realdigital.org/doc/e3f19ac552a3f11020a8db6	
	Digital Circuits	<u>2c525b2c4</u>	

Text Book(s):

- 1. 1. T.R. Padmanabhan and B. Bala Tripura Sundari, "Design through Verilog HDL", WSE, IEEE Press 2008.
- 2. 2. J. Bhaskar, "A Verilog Primer", BSP, 2nd edition 2003.
- 3. Samir Palnitkar, "Verilog HDL", Pearson Education, 2nd Edition, 2003.

Reference Book(s):

- 1. Thomas and Moorby, "The Verilog Hardware Description Language", kluwer academic publishers, 5th edition, 2002.
- 2. Stephen Brown and Zvonko Vranesic, "Fundamentals of Logic Design with Verilog", TMH publications, 2007.
- Charles.H.Roth,Jr., Lizy Kurian John "Digital System Design using VHDL", Thomson, 2nd Edition, 2008

Online Resources:

- 1. www.xilinx.com, Xilinx project navigator evaluation tools version.
- 2. www.altera.com, Altera Quartus evaluation software tool

Web References:

- 1. <u>https://nptel.ac.in/courses/106/105/106105165/</u> (Hardware modeling using Verilog, IIT Kharaghpur)
- 2. <u>https://nptel.ac.in/courses/106/105/106105083/</u> (Electronic Design Automation, IIT Kharaghpur)
- 3. https://nptel.ac.in/courses/117/106/117106092/ (VLSI Circuits, IIT Madras)

	NAR	AYANA	ENGINE	ERING C	OLLEGE:	:NELLOF	RE	
20EC201	2		Digital S	ignal Pro	cessing			R20
Semester	Hou	urs / Week		Total	Credit		Max Ma	rks
	L	Т	Р	hrs	С	CIE	SEE	TOTAL
VI	3	0	0	48	3	40	60	100
Pre-requ	isite: Signal and	lsystems						
Course (Objectives:							
• T	o illustrate the co	ncepts of a	ligital sigr	nal process	ing techniq	ues.		
	o analyze discret	-	0 0	•	•			
	o design infinite i		•	•		ired signal	s.	
	o design finite im	•	•		Ũ	Ũ		
	o summarize the	• •			U	U	or.	
	Dutcomes: After			1 0				to.
CO1	Illustrate the co		A					
							,	
CO 2	Analyze time and	d frequenc	cy domain:	s descriptio	on of discre	te time sig	gnals using	FFT
	Algorithms(BL-0	3)						
	0 (,						
CO 3	Design of IIR filte	ers using d	ifferent m	ethods(BL	-04)			
00.4								
CO 4	Design of FIR filt	ers using c	lifferent n	nethods (B	L-04)			
CO 5	Summarize the a	architectur	al feature	s of progra	mmable D	SP Process	or. (BL-02)	

	CO-PO Mapping													
CO						Р	0						PSO	
	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2
CO1	3	3	3	3	1									2
CO2	3	3	3	3	2									3
CO3	3	3	3	3										
CO4	3	3	3	3	2									3
CO5	3	3	2	2	2								2	2
	•	•	•	•	1: Lo	w, 2-M	ledium	n, 3- H	igh	•	•	•	•	•

COURSE CONTENT MODULE - 1 INTRODUCTION TO DSP AND DFT

MODULE - 1INTRODUCTION TO DSP AND DFT11 HrsReview of DSP & Z-Transforms, Properties of DFT, DFT as a linear transformation, DFT relationship
with other transforms, multiplication of two DFTs- the circular convolution, Linear filtering methods
based on DFT-overlap-save and overlap-add methods. (7 Hr's)

At the end of the Module 1, students will be able to:

- 1. Classify Discrete-time signals and systems. (BL-02)
- 2. Understand the representation of discrete time signals. (BL-02)
- 3. Find the DFT for the given sequence. (**BL-01**)
- 4. Compare ovelap-save and overlap-add methods. (**BL-02**)

Efficient computation of DFT algorithms - Radix 2-Decimation-in-Time & Decimation-in- algorithms, Inverse FFT, Illustration with an example (8 Hr's) At the end of the Module 2, students will be able to: Understand FFT algorithms. (BL-02) Find the DFT of a sequence using DIT-FFT. (BL-01) Find the DFT of a sequence using DIF-FFT. (BL-01) Compare the similarities and dissimilarities between DIT & DIF FFT algorithms. (BL MODULE-3 DESIGN OF IIR FILTERS: Design of IIR filters from analog filters (Butterworth and Cheb IIR filter design by approximation of derivatives, by Impulse invariance, and by bilinear tran	
At the end of the Module 2, students will be able to: 1. Understand FFT algorithms. (BL-02) 2. Find the DFT of a sequence using DIT-FFT. (BL-01) 3. Find the DFT of a sequence using DIF-FFT. (BL-01) 4. Compare the similarities and dissimilarities between DIT & DIF FFT algorithms. (BL MODULE-3 DESIGN OF IIR FILTERS DESIGN OF IIR FILTERS: Design of IIR filters from analog filters (Butterworth and Cheb	
1. Understand FFT algorithms. (BL-02) 2. Find the DFT of a sequence using DIT-FFT. (BL-01) 3. Find the DFT of a sequence using DIF-FFT. (BL-01) 4. Compare the similarities and dissimilarities between DIT & DIF FFT algorithms. (BL MODULE-3 DESIGN OF IIR FILTERS DESIGN OF IIR FILTERS: Design of IIR filters from analog filters (Butterworth and Cheb	
 Find the DFT of a sequence using DIT-FFT. (BL-01) Find the DFT of a sequence using DIF-FFT. (BL-01) Compare the similarities and dissimilarities between DIT & DIF FFT algorithms. (BL MODULE-3 DESIGN OF IIR FILTERS DESIGN OF IIR FILTERS: Design of IIR filters from analog filters (Butterworth and Cheb 	
3. Find the DFT of a sequence using DIF-FFT. (BL-01) 4. Compare the similarities and dissimilarities between DIT & DIF FFT algorithms. (BL MODULE-3 DESIGN OF IIR FILTERS DESIGN OF IIR FILTERS: Design of IIR filters from analog filters (Butterworth and Cheb	
4. Compare the similarities and dissimilarities between DIT & DIF FFT algorithms. (BL MODULE-3 DESIGN OF IIR FILTERS DESIGN OF IIR FILTERS: Design of IIR filters from analog filters (Butterworth and Cheb	
MODULE-3 DESIGN OF IIR FILTERS DESIGN OF IIR FILTERS: Design of IIR filters from analog filters (Butterworth and Cheb	
DESIGN OF IIR FILTERS: Design of IIR filters from analog filters (Butterworth and Cheb	11 1115
	1 \
In filter design by approximation of derivatives, by impulse invariance, and by bilinear tran	
where the design of the second form the district design of the second form and the second s	stormation
methods, Frequency transformation in digital domains, Illustration with an example. REALIZATION OF IIR FILTERS: Structures for IIR systems - Direct form, Cascade for	m Domollol
form and Transposed structures. (3 Hr's)	m, Paranei
At the end of the Module 4, students will be able to:	
1. Construct IIR filters using different structures. (BL-03)	
 Construct fix filters using different structures. (BL-05) Design IIR filters using Butterworth and Chebyshev filters. (BL-04) 	
 Design IIR filters using Impulse invariance and bilinear transformation methods. (BL-0 	4)
 Design interneties using impulse invariance and orimedia dansformation methods. (DD 4 Translate IIR filters in digital domain. (BL-02) 	, ,
MODULE-4 DESIGN OF FIR FILTERS	10 Hrs
DESIGN OF FIR FILTERS: Introduction to FIR filters, Linear phase FIR filters, design of	FIR filters
using Rectangular, Hanning, Hamming, Bartlet and Blackman windows, Illustrative problems.	
REALIZATION OF FIR FILTERS: Structures for FIR systems- Direct form and Case	cade form,
Comparison of FIR and IIR filters.	
At the end of the Module 3, students will be able to:	
2. Construct FIR filters using different structures. (BL-03)	
3. Design FIR filters using windowing techniques. (BL-04)	
4. Design linear phase FIR filters using various techniques. (BL-04)	
MODULE-5ARCHITECTURES FOR PROGRAMMABLE DSP DEVICES	08 Hrs
	nory. Data
· · ·	,, <i>2</i>
· · ·	
Addressing Capabilities, Address Generation Unit.	
 Addressing Capabilities, Address Generation Unit. At the end of the Module 6, students will be able to: 1. List the architectural features of Programmable DSPs. (BL-01) 	
2. Explain the addressing modes of PDSPs. (BL-02)	
 Addressing Capabilities, Address Generation Unit. At the end of the Module 6, students will be able to: List the architectural features of Programmable DSPs. (BL-01) Explain the addressing modes of PDSPs. (BL-02) Summarize the speed issues of programmable DSPs. (BL-02) 	
 Addressing Capabilities, Address Generation Unit. At the end of the Module 6, students will be able to: List the architectural features of Programmable DSPs. (BL-01) Explain the addressing modes of PDSPs. (BL-02) 	

Content beyond syllabus:

- 1. Addressing modes of TMS320C54XX Processors.
- 2. Pipeline Operation of TMS320C54XX Processors.

Self-Study:

Contents to promote self-Learning:

SNO	Торіс	Reference
1	Introduction to Digital	https://www.tutorialspoint.com/digital_signal_processing
	signal Processing	/index.htm

2	Fast Fourier	https://www.youtube.com/watch?v=EsJGuI7e_ZQ	
	Transforms		
4	Design of IIR by	https://www.youtube.com/watch?v=g8o511OswfQ	
	Bilinear		
	transformation method		
4	Design of FIR using	https://www.youtube.com/watch?v=5JpqbuRCjEE	
	Windowing		
	Techniques		
5	Architectures for	https://www.youtube.com/watch?v=tkGRGQZhczs	
	Programmable DSP		
	Devices		

Text Book(s):

- 1. John G. Proakis, Dimitris G. Manolakis, "Digital signal processing, principles, Algorithms and applications," Pearson Education/PHI, 4 th ed., 2007.
- 2. Avtar Singh and S. Srinivasan, "Digital Signal Processing," Thomson Publications, 2004.
- 3. S.Salivahanan, A.Vallavaraj, C.Gnanapriya, "Digital signal processing", Tata McGraw Hill, 2 nd edition, 2011

Reference Book(s):

- 1. Sanjit K Mitra, "Digital signal processing, A computer base approach," Tata McGraw Hill, 3 rd edition, 2009
- 2. B. P. Lathi, "Principles of Signal Processing and Linear Systems," Oxford Univ. Press, 2011.
- 3. A. V. Oppenheim and R.W. Schaffer, & J R Buck, "Discrete Time Signal Processing," 2nd, Pearson Education, 2012.

Online Resources:

- 1. https://nptel.ac.in/courses/117/102/117102060/
- 2. https://www.youtube.com/watch?v=3OFNS8lxa-0
- 4. https://www.youtube.com/watch?v=4Q-R1E5B40Q
- 5. https://www.youtube.com/watch?v=vlFdVYAXIxg
- 6. <u>https://www.youtube.com/watch?v=G-Jzz9fm6qo</u>

Web Resources:

1. https://engineering.purdue.edu/~ee538/DSP_Text_3rdEdition.pdf

2. https://drive.google.com/file/d/1sKEazTJieOS_eVwC6Yh5rDLCWNPXFXpa/view

3.https://books.google.co.in/books?id=5zO6An gAgC&printsec=frontcover&source=gbs ge summary r&cad=0#v=on epage&q&f=false

	l	NARAYAN	NA ENGIN	EERING	COLLEGI	E:NELLO	RE						
20EC2507		DIGITAL SIGNAL PROCESSING LAB R20											
Compostor	H	Iours / Wee	k	Total	Credit		ks						
Semester	L	Т	Р	hrs	С	CIE	SEE	TOTAL					
VI	0	0	3	42	1.5	40 60 100							
Pre-requis	ite• Knov	vledge on §	Signals and	d Systems	and Matl	ah							

Pre-requisite: Knowledge on Signals and Systems and Matlab.

Course Objectives:

- 1. To analyze various continuous and discrete time signals using matlab functions.
- 2. To demonstrate the use of DFT to efficiently process discrete time signals in the frequency domain.
- 3. To design aspects of FIR and IIR filters for given specifications.
- **Course Outcomes**: After successful completion of the course, the student will be able to:
- CO 1 Analyze discrete time signals & systems using MATLAB
- CO 2 Design & implement IIR & FIR filters for different specifications
- CO 3 Design DSP based real time processing systems to meet desired needs of the society

	CO-PO Mapping													
	PO PSO													50
СО	PO	PO	PO	PO	PO	РО	PO	PO	PO	PO	PO	PO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	2	3							2	2		2	2	3
CO2	2	2	2		2				2	2		2	2	2
CO3	2	3							2	2		2	2	3
					1: Lov	w, 2-M	ledium	, 3- Hi	gh					

COURSE CONTENT	CO									
PART-A: Software Experiments using MATLAB software										
(Minimum of 5 experiments are to be conducted)										
Task-1: GENERATION OF DISCRETE TIME SIGNALS										
Objective: To generate various continuous and discrete time signals using MATLAB software.	CO 1									
Task-2: ENERGY AND POWER OF A SIGNAL										
Objective: To find the energy and power of a given discrete time signal using MATLAB software.	CO 1									
Task-3: DFT										
Objective: To find the DFT of a given sequence using MATLAB software.	CO 2									
Task-4: BUTTERWORTH IIR FILTER										
Objective: To design and implement IIR Butterworth (LP/HP) filter using MATLAB software.	CO 3									
Task-5: FIR LOW PASS FILTER										
Objective: To design and implement FIR Low pass filters using any three windows in MATLAB software.	CO 3									
Task-6: FIR HIGH PASS FILTER										
Objective: To design and implement FIR high pass filters using any three windows in MATLAB software.	CO 3									
Task-7: FIR BAND-PASS FILTER										
Objective: To design and implement FIR band-pass filter using any three windows in MATLAB software.	CO 3									
PART-B: Using DSP Processor kits (Floating point) and Code Composure Studio (CCS)										
Task-8: GENERATION OF DISCRETE TIME SIGNALS										
Objective: To generate various continuous and discrete time signals using DSP Processor	CO 1									

and CC studio.	
Task-9: ENERGY AND POWER OF A SIGNAL	
Objective: To find energy and power of a given discrete time signal using CC studio.	CO 1
Task-10: DFT	
Objective: To find the DFT of a given sequence using CC studio.	CO 2
Task-11: FIR FILTER	
Objective: To design and implement FIR filters using CC Studio.	CO 3
Task-12: IIR FILTER	
Objective: To design and implement IIR filters using CC Studio.	CO 3

Additional Experiments:

Task-13: CIRCULAR CONVOLUTION

Objective: To find circular convolution of given two secrete time signals using MATLAB software.

TASK-14: N-POINT DIF-FFT ALGORITHM

Objective: To find the DFT of a given sequence using DIF FFT algorithm in MATLAB cO 2 software.

Virtual Labs:

- Study of Discrete Fourier Transform (DFT) and its inverse <u>http://vlabs.iitkgp.ernet.in/dsp/exp6/index.html</u>
 ED Filter Decise
- FIR Filter Design <u>http://vlabs.iitkgp.ernet.in/dsp/exp8/index.html</u> (High pass FIR Filter) <u>http://vlabs.iitkgp.ernet.in/dsp/exp9/index.html</u> (Band pass and Bandstop FIR filter)
 IIR Filter
- http://vlabs.iitkgp.ernet.in/dsp/exp10/index.html

Self-Study:

Contents to promote self-Learning:

SNO	Торіс	Reference
1	Generation of random sequence	https://www.youtube.com/watch?v=xs2de3YBgZM
2	Energy and power of a signal	https://www.youtube.com/watch?v=Zo7CuL736GU
5	DTFT	https://www.youtube.com/watch?v=QLCXSxgxRPY
6.	N-Point FFT Algorithm	https://www.youtube.com/watch?v=nqaFs-msgUQ(DIT-FFT)https://www.youtube.com/watch?v=6yNcDybxsxo(DIF-FFT)
7.	FIR Filter Design	https://www.youtube.com/watch?v=mXVlFJOMylM (Windowing Techniques)
8.	IIR Filter Design	https://www.youtube.com/watch?v=OCHfpmACqMM(Impulse Invariance method)https://www.youtube.com/watch?v=O0DbpZqhPSg(Frequency Sampling method)https://www.youtube.com/watch?v=zQQF5orJbdg(Chebyshev Filter)

Text Book(s):

- 1. John G. Proakis, Dimitris G. Manolakis, "Digital signal processing, principles, Algorithms and applications," Pearson Education/PHI, 4 th ed., 2007.
- 2. Sanjit K Mitra, "Digital signal processing, A computer base approach," Tata McGraw Hill, 3 rd edition, 2009
- 3. S.Salivahanan, A.Vallavaraj, C.Gnanapriya, "Digital signal processing", Tata McGraw Hill, 2 nd edition, 2011

Reference Book(s):

- 1. A.V.Oppenheim and R.W. Schaffer, & J R Buck, "Discrete Time Signal Processing," 2 nd ed., Pearson Education, 2012.
- 2. B. P. Lathi, "Principles of Signal Processing and Linear Systems," Oxford Univ. Press, 2011.
- 3. Li Tan, Jean Jiang, "Digital Signal Processing, Fundamentals and Applications," Academic Press, Second Edition, 2013
- 4. P. Ramesh Babu, "Digital Signal Processing", 4th edition, 2006, SCITECH publication, India.

Web References:

- 1. https://ewh.ieee.org/r1/ct/sps/PDF/MATLAB/chapter6.pdf
- 2. <u>http://aaronscher.com/Course_materials/Communication_Systems/documents/Energy_signals_matlab_tutorial.pdf</u>
- 3. <u>https://gist.github.com/yassersouri/4154139</u>
- 4. <u>http://matlab.izmiran.ru/help/techdoc/ref/fft.html</u>
- 5. <u>https://in.mathworks.com/help/signal/ref/fir1.html</u>
- 6. <u>https://in.mathworks.com/help/signal/ug/iir-filter-design.html</u>

	-]	NARAYA	NA ENGIN	EERING	COLLEG	E:NELLO	RE			
20EC2508	Integrate	d Circuits	Laborator	у				R20		
Semester	Н	lours / We	ek	Total	Credit		Max Mar	`ks		
	LTPhrsCCIESEE00336154060									
VI	0	0	3	36	1.5	40	60	100		
Pre-requisi supply com		Kilowieug	e of Electro		es and circi	ints, Knowi	leage on at	lai power		
Course Ob	jectives:									
 To Apply To Design To Design To under Course Out 	n different and constr stand the de	types of a uct wavefersigning in	active filter orm generat dustrial app	s. ion circuits lications u	s sing 555 tin	ner.	will be abl	le to:		
CO 1	Illustrate	the workir	ng of Op am	o ICs & Ap	plication spo	ecific analo	g ICs.			
CO 2	Analyze o	operation	al amplifier	based cire	cuits for line	ear and no	n-linear ap	plications.		
CO 3	• •		amplifiers application			ear applica	tion, Multi	vibrator		
CO 4			and nonline on specific I		tion based	Op amp Ci	rcuits and	circuits		

	CO-PO Mapping														
CO	PO PSO														
	PO													PSO	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	
CO1	2	2							3	3		2	3		
CO2	2	2	2						3	3		2	3		
CO3	2	2	2						3	3		2	3	2	
CO4	2	2	2						3	3		2	3	2	
					1: Lov	w, 2-M	ledium	n, 3- Hi	igh				•		

Note: List of Experiments (At least twelve experiments are to be done):

COURSE CONTENT								
Task-1: Inverting, Non-Inverting & Unity Gain Amplifiers Using IC 741 Op-Amp								
Objective: To determine voltage gain and frequency response of inverting, non-inverting & unity Gain amplifiers using IC 741 Op-Amp.								
Task-2: Measurement of Op-Amp Parameters								
Objective: To measure offset voltages, bias currents, CMRR, Slew Rate using IC-741 Op-Amp.	CO 1							
Task-3: Integrator & Differentiator Using IC 741 Op-Amps.								

Objective: To design, construct and verify the response of	CO 2
a) Integrator using Op-amp IC741 for sine and square wave inputs at 1 KHz frequency.b) Differentiator using Op-amp IC741 for sine and square wave inputs at 1 KHz frequency.	
Task-4: Op-Amp Applications-Zero Crossing detector, Window Detector & Schmitt trigger.	CO2
Objective: To study Zero Crossing detector, Window detector & Schmitt trigger using Op-Amp.	
Task-5: Op-Amp Applications-Signal Converters.	
Objective: To Construct suitable circuits for voltage to current converter and current to voltage converters using Op-Amp.	CO 2
Fask-6: Instrumentation Amplifier Using IC 741 Op-Amps.	
Objective: To design an instrumentation amplifier and determine its voltage gain using IC-741 Op-Amp.	CO 3
Task-7: Function Generator Using IC 741 Op-Amps.	
Objective: To generate triangular and square wave forms and to determine the time period of the wave forms.	CO 3
Task-8:RC PHASE SHIFT OSCILLATOR AND WEIN BRIDGE OSCILLATOR	
Objective: To study the Operation of Wein – Bridge Oscillator and RC phase shift oscillator using IC 741 Op-Amp and to determine the frequency of Oscillations.	CO 3
Task-9: DESIGN OF ACTIVE FILTERS (LPF, HPF)	
Objective: To design, construct and plot the frequency response of	CO3
a) First order low pass filter with cut-off frequency of 5 KHzb) First order high pass filter with a cut-off frequency of 1 KHz.	
Task-10: Astable Multivibrator Using IC 555 Timers.	CO4
Objective: To obtain a symmetric square wave output wave forms by maintaining certain duty cyc using 555 timers.	le by
Task-11: Monostable Multivibrator Using IC 555 Timers.	
Objective: To design a Monostable Multivibrator using 555 timer to get 10msec pulse output.	
Task-12: Data converters using Op-amp	
Objective: To obtain analog output voltages for the digital input data using 3-bit binary weighted resistor type DAC using Op-Amp.	CO5
Additional Experiments:	
Ruthonal Deportments.	

Objective: Design and test a low Dropout regulator using op-amps for a given voltage regulation CO5 characteristic Using IC 741 Op-Amp.

Task-14: DC-DC Converter Using IC 741 Op-Amps. **Objective:** Design of a switched mode power supply that can provide a regulated output voltage CO 5 for a given input range using IC 741 Op-Amp. Virtual Labs: 1. Study of basic properties of operational amplifier: inverting and non-inverting amplifiers.

- 2. Study of differentiator and integrator using operational amplifier.
- 3. Design and simulate triangular/square waveform generator using IC 741.
- 4. Design and simulate Frequency response of 1st order HPF and LPF filter.

Self-Study:

Contents to promote self-Learning:

SN O	Торіс	CO	Reference
1	Amplifiers & Parameters	CO1	https://www.youtube.com/watch?v=ImTzh3kgnvA https://www.youtube.com/watch?v=jonWWaBdMNU https://www.youtube.com/watch?v=C5GcP5P25Jo https://www.youtube.com/watch?v=mgoCeOCjiBI&l ist=PL1hqL6v9rNg4tK1AW7p4vn26yRyu8XdfJ&ind ex=41
2	Op-Amp Applications	CO2	https://www.youtube.com/watch?v=mgoCeOCjiBI& ist=PL1hqL6v9rNg4tK1AW7p4vn26yRyu8XdfJ&ind ex=41 https://www.youtube.com/watch?v=cXmmlwVaA0k (Schimitt trigger using IC 741)
3	IC 555 Timers,IC 565 PLL and IC 566 VCO	CO3	https://www.youtube.com/watch?v=75hYqRtLJTQ(Astable using 555)https://www.youtube.com/watch?v=j_cJ7DV_T_M(IC565 PLL)https://www.youtube.com/watch?v=S_v70oFKmnw(IC566 VCO).
4	Active Filters & D- A Converters	CO4	https://www.youtube.com/watch?v=mgoCeOCjiBI& ist=PL1hqL6v9rNg4tK1AW7p4vn26yRyu8XdfJ&ind ex=41

Data sheets:

- 1. https://www.ti.com/lit/ds/symlink/ua741.pdf.
- 2. https://www.st.com/resource/en/datasheet/cd00000479.pdf
- 3. <u>http://eeshop.unl.edu/pdf/lm565.pdf</u>

Reference Book(s):

- 1. https://datasheetspdf.com/pdf-file/514046/NXP/NE565/1
- 2. http://www.elektronikjk.com/elementy_czynne/IC/NE566.pdf

Web Resources for Virtual Lab:

1.http://vlabs.iitkgp.ernet.in/be/index.html

20EC2509		ELECTRONIC DESIGN WORKSHOP												
Semester	Н	ours / Wee		Max M	arks									
	L	Т	Р	hrs	С	CIE	SEE	TOTAL						
VI		0	3	48	1.5	40	60	100						

Guidelines:

- 1. The mini-project is a team activity having 3-4 students in a team. This is electronic product design work with a focus on electronic circuit design.
- 2. The mini project may be a complete hardware or a combination of hardware and software. The software part in mini project should be less than 50% of the total work.
- 3. Mini Project should cater to a small system required in laboratory or real life.
- 4. It should encompass components, devices, analog or digital ICs, micro controller with which functional familiarity is introduced.
- 5. After interactions with course coordinator and based on comprehensive literature survey/ need analysis, the student shall identify the title and define the aim and objectives of miniproject.
- 6. Student is expected to detail out specifications, methodology, resources required, critical issues involved in design and implementation and submit the proposal within first week of the semester.
- 7. The student is expected to exert on design, development and testing of the proposed work as per the schedule.
- 8. Completed mini project and documentation in the form of mini project report is to be submitted at the end of semester.
- 9. The tutorial sessions should be used for discussion on standard practices used for electronic circuits/product design, converting the circuit design into a complete electronic product, PCB design using suitable simulation software, estimation of power budget analysis of the product, front panel design and mechanical aspects of the product, and guidelines for documentation /report writing.

	NARAYANA ENGINEERING COLLEGE:NELLORE														
20EC2013 VLSI DESIGN R20															
Semester	Н	ours / Wee	k	Total	Credit		Max Mar	Max Marks							
	L	Т	Р	hrs	С	CIE	SEE	TOTAL							
VI	3 0 0 48 3 40 60 100														

Pre-requisite: Basics of semiconductor devices, Electronics circuits, Digital logic Design, Physics.

Course Objectives:

1. To understand the fabrication process of MOS, CMOS, Bi-CMOS Transistors, the electrical properties of MOS circuits

2.To Know the design rules, layout diagrams, stick diagrams and will also acquaint with knowledge on electrical constraint while designing

3. To know the design of various complex logic gates using CMOS and other forms of logic.

4.Subsystem design is used in VLSI integrated circuits for adders, multipliers, shifters, ALUs and Array Subsystems used in sequential circuit designs i.e. SRAM, DRAM.

5 To know the architectural details of FPGAs, CPLDs and procedural steps to develop semiconductor ICs like Full-Custom, Semi-Custom & programmable ICs.

Course Outcomes: After successful completion of the course, the student will be able to:

CO 1	Analyze the MOS Device Equations & CMOS basic inverter characteristics. (BL-4).
CO 2	Apply the concepts of stick diagrams and layout design rules for CMOS Circuits. (BL-3).
CO 3	Design the digital complex logic gate design of various types using CMOS and other
	forms of logic. (BL-3).
CO 4	Develop various Data Path subsystems, parity generators, and array of memories to
	compensate trade-off area, speed and power requirements. (BL-3).
CO 5	Implement digital logic circuits using PLAs, FPGAs and CPLDs. (BL-4).

	CO-PO Mapping															
СО	PO													PSO		
	PO PO PO P PO P PO PO PO PO PO PO PSO												PSO	PSO 2		
	1	2	3	0	5	0	0	8	9	10	11	12	1			
				4		6	7									
CO1	3	3	3		2								2	1		
CO 2	3	3	3										3	3		
CO 3	3	3	3	3	1									3		
CO 4	3	3	3	1	1								3	1		
CO5	3	2	2	1	3								3	2		
					1: L	ow, 2	-Med	ium, 3-	· High							

	COURSE CONTENT	
MODULE-1	Introduction to MOS Technologies	12 hours
	integrated circuit technologies, Basic of MOS transistors, enhancement metion mode MOS transistor, NMOS and CMOS fabrication, BICMOS.	ode MOS

ELECTRICAL PROPERTIES : Ids–Vds relationships, Threshold Voltage, Body effect, Channel length modulation, gm, gds, figure of merit $\omega 0$, Pass transistor, NMOS Inverter, CMOS Inverter analysis and design, Latch-up in CMOS circuits

At the end of the Module 1, students will be able to:

- 1. Illustrate the evolution of Integrated Circuits and MOS Technologies. (BL-2).
- 2. Compare Bipolar, NMOS, CMOS, BICMOS and GaAs technologies. (BL-2).
- 3. Explain PMOS Fabrication Process. (BL-2).
- 4. Interpret the fundamentals of MOS devices and its V-I characteristics.(BL- 4)

5. Compare the relative merits of the three different forms of pull-up for an inverter circuit.(BL-2).

MODULE-2 VLSI CIRCUIT DESIGN PROCESS 9 hours

VLSI Design Flow, MOS Layers, Stick Diagrams, Design Rules and Layout, 2µm CMOS Design rules for wires, Contacts and Transistors Layout Diagrams for NMOS, CMOS Inverters and Gates, Scaling of MOS Circuits: Scaling models, Scaling factors for device parameters, Limitations of Scaling.

At the end of the Module 3, students will be able to:

1. Develop the Layout of simple MOS circuits using Lambda based **design** rules. (BL-3).

2. Demonstrate how the NMOS, CMOS transistors layouts are built using $2\mu m$ CMOS Design rules.

3. Illustrate the scaling models and scaling factors for NMOS,PMOS and CMOS Devices.(BL-2) 4. Infer the limitations of scaling.

MODULE-3

GATE LEVEL DESIGN

9 hours

Logic gates and other complex gates, Switch logic, Other Forms of CMOS Logic: Pseudo-nMOS logic, Dynamic CMOS logic, Clocked CMOS (C² MOS) logic, CMOS Domino Logic, n-p CMOS logic.

At the end of the Module 4, students will be able to:

1. Demonstrate any logic function into Gate level design. (BL-2)

2. Illustrate various logic circuits with different design styles. (BL-2)

3. Explain CMOS domino logic and give its advantages and disadvantages. (BL-2)

4. Compare the other forms of CMOS Logic. (BL-2)

MODULE-4

DATA PATH SUBSYSTEMS

9 hours

Shifters, Design of an ALU Subsystem, Adders, Multipliers, Parity generators, SRAM, DRAM, ROM, Serial Access Memories, and Content Addressable Memory.

At the end of the Module 5, students will be able to:

1.Interpret the different architectures for adders.(BL-2)

2. Identify the speed and area trade off Adders, Multipliers and shifters. (BL-3)

3. Demonstrate the working principle and operation of different Memories. (BL-2).

4.Illustrate the read and write operations in static RAM with neat diagram. (BL-2)

MODULE-5

IMPLEMENTATION STRATEGIES

9hours

Full custom, Standard Cell, Gate Array based ASICs, PLA, PAL, PLD, and CPLD & FPGA Architecture. Programmable Array Logic, Design Approach.

At the end of the Module 6, students will be able to:

1. Illustrate the techniques of chip design using programmable devices. (BL-2).

2. Demonstrate the architecture and routing procedures of CPLD & FPGA. (BL-2).

Total hours: **48 hours**

Content beyond syllabus: Physical Design: Floor-Planning, Placement and Routing.

Module Introduction to MOS	Reference https://www.youtube.com/watch?v=lpXNCwsnxjM(Integra
MOS	<u>Integra</u> <u>integra</u>
	ted Circuit Technology)
Tachnologiag	ted Circuit Technology)
Technologies &FabBasic	https://www.youtube.com/watch?v=kcJi8gJ1kBo
	(History-Future Trends)
Electrical	https://www.youtube.com/watch?v=WsdVCCJsyfU
Properties of MOS	(Evolution Integrated Circuits)
	https://www.youtube.com/watch?v=9SnR3M3CIm4&t=24
Circuits.	<u>3s (Introduction to VLSI Design Basics)</u>
	https://www.youtube.com/watch?v=WBa2Fw5-yU4
	(MOS Transistor Switches and CMOS Logic)
	https://www.youtube.com/watch?v=p4E1to95w_w&list
	<u>=PLuv3GM6-</u>
	gsE3npYPJJDnEF3pdiHZT6Kj3&index=13&t=0s
	(Enhancement mode MOSFET Operation)
	https://www.youtube.com/watch?v=b6QRdt0xZwA&list
	<u>=PLuv3GM6-</u>
	gsE3npYPJJDnEF3pdiHZT6Kj3&index=13 (Depletion
	mode MOSFET Operation)
	https://www.youtube.com/watch?v=ptLeMiTwgJA
	(NMOS Fabrication Process).
	https://www.youtube.com/watch?v=QUExo3nSyxY
	(CMOS Fabrication)
	https://www.youtube.com/watch?v=b827fsVm7_4
	(Fabrication of n-well Process)
	https://www.youtube.com/watch?v=2bdAYqZqudQ
	(Continuation of p-well)
	https://www.youtube.com/watch?v=Cld7ux8kQi8
	(Twin Tub)
	https://www.youtube.com/watch?v=-4jOzGN0GTw
	(BiCMOS Fabrication Process)
	https://www.youtube.com/watch?v=y3cSgK-wmFs
	(SOI Process).
	https://www.youtube.com/watch?v=hHVbFHjccO8
	(Resistors)
	https://www.youtube.com/watch?v=jp72NWXdKvA
	(Integrated resistor and
	Capacitor)https://www.youtube.com/watch?v= rpuddEum
	2k&list=PLqilb1UO8M-
	<u>XEyTzvmZZ_9t9ycpKOlG28&index=2&t=0s</u> (Basic
	Electrical Properties part-1)
	https://www.youtube.com/watch?v=C2mm4UbPIT0&list=
	& Bi-CMOS Circuits.

		PLqilb1UO8M-
		XEyTzvmZZ 9t9ycpKOlG28&index=3&t=0s
		(Part-2)
		https://www.youtube.com/watch?v=L7s9Ar0XdMw&list=
		PLqilb1UO8M-
		XEyTzvmZZ_9t9ycpKOlG28&index=4&t=0s
		(Part-3)
		https://www.youtube.com/watch?v=CpK-3w8zURI
		(nMOS Logic Circuits-Pull-ups)
		https://www.youtube.com/watch?v=fqiYu6IOtmU(CMOS
		Inverter Analysis)
		https://www.youtube.com/watch?v=57U1LxJD0kc&list=P
		Lqilb1UO8M-
		XEyTzvmZZ_9t9ycpKOlG28&index=5&t=0s(BICMOS)
		https://www.youtube.com/watch?v=uihFUbOT1zM
		Latchup in CMOS Logic
2	VLSI Circuit	https://www.youtube.com/watch?v=x68G7FUP9k4
	design Processes	https://www.youtube.com/watch?v=iRoazTYnJqo
	C	(Stick Diagrams)
		https://www.youtube.com/watch?v=Ew1ii_XYdtg&list=PL
		WchUMz3kCP5xYeW4EN6V-
		gsYt2XrfniG&index=2&t=0s -1
		https://www.youtube.com/watch?v=tT511b3qLWc&list=PL
		WchUMz3kCP5xYeW4EN6V-
		gsYt2XrfniG&index=3&t=0s -2
		https://www.youtube.com/watch?v=k4EnmTuIepE&list=P
		LWchUMz3kCP5xYeW4EN6V-
		gsYt2XrfniG&index=4&t=0s-3
		https://www.youtube.com/watch?v=GpVHcXoZkA0&list=
		PLWchUMz3kCP5xYeW4EN6V-
		gsYt2XrfniG&index=5&t=0s -4
		https://www.youtube.com/watch?v=jkofN9fhHK8&list=PL
		WchUMz3kCP5xYeW4EN6V-
		gsYt2XrfniG&index=6&t=0s - 5
		https://www.youtube.com/watch?v=SC4nDbebpsM&list=P
		LWchUMz3kCP5xYeW4EN6V-
		gsYt2XrfniG&index=12&t=0s- (CMOS XOR Gate)
		https://www.youtube.com/watch?v=D_M_6xgyxjo&list=P
		LWchUMz3kCP5xYeW4EN6V-
		gsYt2XrfniG&index=9&t=0s (Design Rules and layout for
		cmos logic gates)
		https://www.youtube.com/watch?v=1agKlr0NsiU
		(MOS LAYERS, STICK Diagrams, Design Rules and
		Layout)
		https://www.youtube.com/watch?v=vXb3miSeXZw&list=
		PLWchUMz3kCP5xYeW4EN6V-

		$= \mathbf{V}(0\mathbf{V}_{\mathbf{n}}\mathbf{f}_{\mathbf{n}};\mathbf{C},0) = 1_{\mathbf{n}}1_{\mathbf{n}} = 1_{\mathbf{n}}0$
		gsYt2XrfniG&index=10&t=0s
		(Types of contact Cuts)
		https://www.youtube.com/playlist?list=PLqilb1UO8M-
		W65iA7Pr8E3_QyWHgnon1S (Basic Circuit Concepts)
3	Gate Level Design	https://www.youtube.com/watch?v=8caQpnxa3iE
		(CMOS NAND, NOR and Other Gates: Clocked CMOS)
		https://www.youtube.com/watch?v=q8adOpQx7tc
		(Dynamic CMOS, Pass transistor, Transmission gate)
4	Data Path	https://www.youtube.com/playlist?list=PLqilb1UO8M-
	Subsystems	US31joQFPJ4juX1sX9KkcH
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	(VLSI Subsystem Design)
		https://www.youtube.com/watch?v=36hCizOk4PA
		(Half & Full Adder, Carrylook ahead adder)
		https://www.youtube.com/watch?v=4ukbN83kY54&list=P
		LWchUMz3kCP5xYeW4EN6V-
		$\underline{gsYt2XrfniG\&index=26\&t=0s}$
		(Design of 4 Bit ALU)
		https://www.youtube.com/watch?v=Lc-
		AWOJ1qwo&list=PLWchUMz3kCP5xYeW4EN6V-
		gsYt2XrfniG&index=27&t=0s
		(Carry select adder, carry skip adder, CLA)
		https://www.youtube.com/watch?v=EMcW9EggY0s&list=
		PLbMVogVj5nJTDr6KqQXNcxCvooSMnBuXj&index=13
		(Multipliers)
		https://www.youtube.com/watch?v=5-
		PI4T25OXI&list=PLZe4P0P_9CovC7jP0URDHzI31kkTE
		MS70&index=
		(Array Multiplier)
		https://www.youtube.com/watch?v=5PVweRB4QvY&list=
		PLWchUMz3kCP5xYeW4EN6V-
		gsYt2XrfniG&index=24&t=0s
		(4 Bit Barrel Shifter)
		https://www.youtube.com/watch?v=HuSWjf0NToI
		(Parity generator)
		https://www.youtube.com/watch?v=dmBc-E3EpgA
		https://www.youtube.com/watch?v=k5VBJcUcaWU
		https://www.youtube.com/water.v=k5+b5ebea/vo
		(High Density Memories)
		https://www.youtube.com/watch?v=wNNtz_My2ps
		(DRAM)
5	Comioco de otorio	https://www.wowtube.com/wortsh?w. IAN7- #0.00
5	Semiconductor	https://www.youtube.com/watch?v=JAN7odb8n90
	Integrated Circuit	(Full Custom, semi Custom etc)
	Design	https://www.youtube.com/watch?v=gCAYY0fHPq4
		(PLDS:PLA,PAL,CPLD,FPGA)

https://www.youtube.com/watch?v=khZkhE6wJis         (Vlsi Design Methodology)         https://www.youtube.com/watch?v=CLUoWkJUnN0&list=         PLB19593440B2BB5DC&index=36&t=0s         (Introduction to FPGA)         https://www.youtube.com/watch?v=tJGtT9ky3H0         CPLD Architecture         https://www.youtube.com/watch?v=kg5FAIAQdmU         CPLD & FPGA         https://www.youtube.com/watch?v=r8bziBVnPdU         https://www.youtube.com/watch?v=0nMHJ0VoYhY         FPGA Architecture         https://www.youtube.com/watch?v=n0xljhsZDUg&list=PL         B19593	
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	--

#### **Text Books:**

1. Kamran Eshraghian, Douglas A. Pucknell and Sholeh Eshraghian, *Essentials of VLSI Circuits and Systems*, PHI, 2005.

2. P.P. Sahu, VLSI Design, TMH, 1st edition 2013.

3. K.Lal Kishore and V.S.V. Prabhakar, "VLSI DESIGN", IK Publishers, 1st edition 2009

#### **Reference Books:**

1.John P Uyemura, Introduction to VLSI Circuits and Systems, Wiley India, 2006

2. Jhon F.Wakerly, "Digital Design Principles & Practices", Pearson Education Asia, 3rd Edition, 2005.

3. John M. Rabaey, Digital Integrated Circuits: A Design Perspective, PHI, 2nd Edition, 1997.

4. Wayne Wolf, "Modern VLSI Design", Pearson Education, 3rd Edition, 2008.

5.Sabastian smith, "Application Specific Integrated Circuits", Addison Wesley Publishing Company Incorporated, 2008

6. Principles of CMOS VLSI Design- Weste and Eshraghian, Pearson Education, 1999

#### **Online Resources:**

1. <u>https://www.y2mate.com/youtube/faiEVOOCe-s</u>

2. <u>https://www.btechguru.com/courses--nptel--electronics-and-communication-engineering--advanced-</u>

- vlsi-design-video-lecture--ECE--EC117101004V.html
- 3. <u>https://www.youtube.com/watch?v=khZkhE6wJis</u>
- 4. <u>https://www.youtube.com/watch?v=m86zSu8vbZE</u>
- 5. <u>https://www.youtube.com/watch?v=W7LhLL75DYo</u>
- 6. https://www.youtube.com/watch?v=Ew1ii_XYdtg&list=PLWchUMz3kCP5xYeW4EN6V-

#### gsYt2XrfniG

#### Web References:

1.<u>https://nptel.ac.in/courses/117/101/117101058/</u>

2.http://www.powershow.com/view/3d1876-

<u>Y2ViN/Design_Rules_EE213_VLSI_Design_Stick_Diagrams_VLSI_design_powerpoint_ppt</u> presentation

3.<u>http://www.faadooengineers.com/threads/2274-VLSI-Tutorial-Full-Detailed-EbookPresentation-amp-</u> Lecture-Notes

	N	ARAYA	NA ENG	INEERING	COLLEGE	E:NELLOF	RE								
20EC2014								R20							
Semester	Hours / Week			Total hrs C	Credit		Max Ma	urks							
	L	Т	Р		С	CIE	SEE	TOTAL							
VII	3	0	0	48	3	40	60	100							
Pre-requisite:	EMTL, I	Engineeri	ng physic	cs											
<ol> <li>To the</li> <li>To</li> <li>To</li> <li>To</li> <li>and</li> <li>To</li> </ol>	apply Ele Summ cory(scatt illustrate outline the d structure	arize n ering Ma microwa he basic o es ize the v	nicrowave atrix ve composi elements o various op	e system nents such a of optical fib		oonents ir ces ion link, fil	n terms ber modes								
<b>Course Outco</b>	mes: Afte	er succes	sful com	oletion of th	e course, th	e student w	ill be able	to:							
CO 1	Interpret	t the impo	ortance of	waveguides	5										
CO 2	Illustrate	the worl	king of pas	ssive devices	;										
CO 3	Differen perform		ear bean t	ubes and cr	ossed field	tubes in ter	rms of ope	ration and							
CO 4	Analyze	the signa	l propagat	ion in optica	l fibers										
CO 5	Select ap	propriate	e optical s	ources and c	letectors for	specific ap	Select appropriate optical sources and detectors for specific applications								

					С	CO-PC	) Map	ping						
СО						PSO								
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	3	1										1	
CO2	3	3	1	1									1	
CO3	3	3	1	1									3	
CO4	3	3	1	1									1	
CO5	3	3	1	1		1							3	
	•	•	•	•	1: Lov	w, 2-N	ledium	, 3- Hi	gh	•	•	•		

COURSE CONTENT						
MODULE – 1	WAVEGUIDES	9 Hrs				
	AND COMPONENTS: Introduction, microwave spectrum angular waveguides, circular waveguides, microwave cavitie					
At the end of the M	Iodule 1, students will be able to:					
1. Explain im	pedance matching network for any transmission line or syst	tem. ( <b>BL-02</b> )				

- 2. Understand various parameters of waveguide and use of component as per applications. (BL-02)
- 3. Find impedance by using smith chart. (**BL-01**)
- 4. Explain various waveguides. (BL-02)
- 5. Summarize various waveguide components. (BL-02)

MODULE-2 MICROWAVE PASSIVE COMPONENTS

Microwave passive devices : Microwave hybrid circuits, directional couplers, circulators and isolators. Coaxial connectors, adapters, Phase shifters, Attenuators, Waveguide Tees.

Microwave Semiconductor Devices: Gunn Oscillator – Principle of operation, Characteristics, Two valley model, IMPATT, TRAPATT diodes.

At the end of the Module 3, students will be able to:

- 1. Explain different parameters of two port devices. (BL-02)
- Understand the operation of various passive devices and find their application in various fields. (BL-02)
- 3. Find the S matrix of multiport networks. (BL-01)
- 4. Understand Symmetrical Z and Y parameters. (BL-02)
- 5. Summarize various Microwave passive devices. (**BL-01**)

MODULE-3	MICROWAVE TUBES AND MEASUREMENTS	

10 Hrs

9 Hrs

**Microwave Tubes:** (i) Linear Beam Tubes – Two cavity Klystron amplifier -velocity modulation, bunching process, output power, Reflex Klystron oscillator, power output and efficiency, Travelling Wave Tube (TWT).

(ii) **Crossed Field Tubes** – Magnetron oscillator, pi-mode operation, power output and efficiency, Hartree Condition, Mode jumping in Magnetron

Microwave measurements: microwave bench, errors and precautions, power, attenuation, frequency, standing wave, impedance measurements.

At the end of the Module 3, students will be able to:

1. Understand principle of operation of Microwave Tubes (BL-1)

2. Understand principle of operation of Microwave Semiconductor devices (BL-1)

3.Derive the expressions power output and efficiency of all microwave devices (BL3)

4.Differentiate Linear bean tubes and crossed field tubes in terms of operation and performance (BL5)

MODULE-4	INTRODUCTION TO OPTICAL FIBERS	10 Hrs
----------	--------------------------------	--------

Evolution of fiber optic system-Elements of an Optical Fiber Transmission link-Ray Optics-Optical Fiber Modes and Configurations. Single Mode Fibers-Graded Index fibers Structure.

**Signal Degradation Optical Fibers**: Attenuation–Absorption losses, Scattering losses, Bending Losses, Core and Cladding losses, Signal Distortion in Optical Waveguides

At the end of the Module 4, students will be able to:

- 1. Understand the fundamental principles of optics and light wave. (BL-02)
- 2. Explain the transmission characteristics of optical fiber. (BL-02)
- 3. Explain various losses in optical fibers. (BL-02)
- 4. Illustrate the signal distortion in optical waveguides. (**BL-02**)
- 5. Explain different fibers structures. (BL-02)

MODULE-5FIBER OPTICAL COMPONENTS AND APPLICATIONS1	0 Hrs
----------------------------------------------------	-------

Direct and indirect Band gap materials-LED structures–Light source materials–Quantum efficiency and LED power, Modulation of a LED, lasers Diodes: Modes and Threshold condition–Rate equations–External Quantum efficiency–Resonant frequencies, PIN and APD diodes.

Applications of optical communication: Telephony, Telemetry, video distribution, military applications.

At the end of the Module 5, students will be able to:

- 1. Explain optical fiber communication links using appropriate optical fibers light sources. (BL-02)
- 2. Outline the various LED structures. (**BL-02**)
- 3. Explain the terms quantum efficiency, LED power, Modulation of a LED. (BL-02)
- 4. Explain the operation of LASER PIN, APD diodes. (BL-02)
- 5. List various applications of Fiber optical receivers. (BL-01)

Total hours: 48hours

**Term work:** Able to analyze and find applications and limitations of microwave tubes and Amplifiers, Explore concept of designing and operating principles of modern optical systems

Content beyond syllabus:

- 1. Flexible branching of an optical fiber.
- 2. Expanding applications of bending-loss-resistant fiber

#### Self-Study:

Contents to promote self-Learning:

SN	Торіс	Reference
0		
1	Microwave transmission lines	https://www.tutorialspoint.com/microwave_engineering/mi crowave_engineering_transmission_lines.htm
2	Microwave network theory and passive devices	https://www.youtube.com/watch?v=tKZ-lAzYLys, https://www.youtube.com/watch?v=rKLy9_mNryw
3	Microwave Tubes and Diodes	http://www.clivepoole.com/wp- content/uploads/2016/07/Lecture-11-Microwave- Semiconductor-Materials-and-Diodes.pdf
4	Fiber optic System	https://www.tutorialspoint.com/principles_of_communicati on/principles_of_optical_fiber_communications.ht
5	Fiber optical sources &receivers	https://www.youtube.com/watch?v=nmcL8SVUrNA https://www.electronics- notes.com/articles/connectivity/fibre-optics/optical- receiver.php

#### Text Book(s):

- 1. Microwave devices and Circuits-Samuel Y. Liao, Pearson, 3rd Edition, 2003.
- Microwave principles-Herbert J.Reich, J.G.Skalnik, P.F.Ordung and H.L.Krauss, CBS publishers and distributors, New Delhi, 2004
- 3. GerdKeiser, "OpticalFiberCommunication" McGraw–HillInternational, Singapore, 3rded., 2000
- 4. J.Senior, "OpticalCommunication, Principles and Practice", PrenticeHallofIndia, 1994

#### **Reference Book(s):** 1. Foundations for microwave engineering-R.E.Collin, IEEE press, John Wiley, 2ndedition, 2002 2. Microwave circuits and passive devices-M.L.Sisodia and G.S.Raghuvanshi, Wiley Eastern Ltd., New age International publishers Ltd., 1995. 3. Microwave engineering passive circuits-Peter A.Rizzi, PHI, 1999. 4. Electronic and Radio Engineering-F.E.Terman, McGraw-Hill, 4th Edition, 1995 5. Microwave Engineering – A. Das, TMH, 2nd ed., 2009 6. MaxMing-KangLiu,"Principles and Applications of Optical Communications", TMH, 2010.2 .S.C.Gupta,"Textbook on optical fiber communication and its applications", PHI, 2005. Satish Kumar, "Fundamentals of Optical Fiber communications", PHI, 2009 7. **Online Resources:** 1 https://ww w.youtube.com/watch?v=pavBq7HIoIE 2. https://ww w.youtube.com/watch?v=q6_q2IBm93o 3. https://ww w.youtube.com/watch?v=WR4559RqRzU 4. https://www.digimat.in/nptel/courses/video/108104113/L11.html 5. https://www.digimat.in/nptel/courses/video/108104113/L31.html https://ww 6 w.youtube.com/watch?v=5R0el7gznys 7. https://www.youtube.com/watch?v=zVIWCz9vTL4 8. https://www.youtube.com/watch?v=kMYGs_9wY-U 9. www.nptel videos.in/2012/12/advanced-optical-communication.html Web References: 1. https://ww w.tutorialspoint.com/microwave_engineering/microwave_engineering_useful_resources.htm 2. https://ww w.electronics-notes.com/articles/electronic components/diode/schottky-barrier-diode.php https://d13 3. mk4zmvuctmz.cloudfront.net/assets/main/study-material/notes/electronicscommunication_engineering_optical-fiber-communication_analog-and-digital-links_notes.pdf 4. https://ww w.microwaves101.com/encyclopedias/books-on-microwave-engineering 5. https://en. wikipedia.org/wiki/Microwave engineering 6. http://www .microwaveeng.com 7. http://www .meslmicrowave.com/microwave-integrated-circuits/overview/

NARAYANA ENGINEERING COLLEGE:NELLORE										
20EC2509		VLSI DESIGN LAB R20								
Semester	Н	ours / Wee	ek	Total	Credit		Max Ma	rks		
	L	Т	Р	hrs	С	CIE	SEE	TOTAL		
VI	0	0	3	36	1.5	40	60	100		
Pre-requisite: A course on Microwave and optical communications.										
Course Ob	jectives:									
1. To unde	1. To understand how to measure different performance parameters of the circuits.									
2. To Cr	eate some	innovative	ideas for	the stude	nts to desi	ign various	circuits to	o satisfy the		
	ice paramete					0		2		
•	gn the layou		•							
5. 10 <b>de</b> si	gii tile luj et	101 1051	e en cuito							
Course Ou	tcomes: At	fter succes	sful comp	letion of t	he course,	the student	will be ab	le to:		
					e given prol					
<b>CO 1</b>		-			and verify	•				
	the given		in suitable	Simulator		the results	•			
CO 2	Analyze the obtained results of the given experiment/problem.									
02										
CO 3	Implement the experiments using FPGA/CPLD hardware tools.									
200										

	CO-PO Mapping													
		PO PSO												
СО	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
<b>CO1</b>	3	3	2						2	3		2	2	3
CO2	3	2	2						2	3		2	2	3
CO3	3	3	2						2	3		2	2	3
	1: Low, 2-Medium, 3- High													

COURSE CONTENT	СО				
Task-1: Realization of Logic gates					
<b>Objective:</b> Develop VERILOG model for all basic gates and simulate to verify the functionality and synthesize to verify the RTL schematic.	CO 1				
Task-2: Design and Implementation of 4-Bit ripple carry and carry look ahead adder using Behavioral, Dataflow and Structural modeling.					
<b>Objective:</b> Develop the VERILOG model for 4-bit ripple carry adder and simulate to verify the functionality and synthesize to verify the RTL schematic.	CO 1				
Task-3: Design and Implementation of 16 to 1 mux through 4 to 1 mux.					
<b>Objective:</b> Develop the VERILOG model for 16:1 mux. through 4:1 mux. and simulate to verify the functionality and synthesize to verify the RTL schematic.					
Task-4: Design and Implementation of 8 to 3 encoder.					

<b>Objective:</b> Develop the VERILOG model for 8 to 3 encoder to and simulate to verify the functionality and synthesize to verify the RTL schematic.	CO 1
Task-5: Design and Implementation of 8-bit parity generator and checker.	
<b>Objective:</b> Develop the VERILOG model for 8-bit parity generator and simulate to verify the functionality and synthesize to verify the RTL schematic.	CO 1
Task-6: Design and Implementation of D-Flip-Flop.	
<b>Objective:</b> Develop the VERILOG model for D-flip flop and simulate to verify the functionality and synthesize to verify the RTL schematic.	CO 1
Task-7: Design and Implementation of 8 bit synchronous up-down counter.	
<b>Objective:</b> Develop the VERILOG model for 8-bit synchronous up-down counter and simulate to verify the functionality and synthesize to verify the RTL schematic.	CO 1
Task-8: Design and simulate a CMOS Inverter	
<b>Objective:</b> To generate layout for inverter using Tanner/Micro wind tool or equivalent industry standard software and simulate to verify the functionality.	CO 2
Task-9: Design and simulate CMOS NAND and NOR Gate.	
<ul> <li>Objective: (1) To generate layout for NAND gate using Tanner/Micro Wind tool or equivalent industry standard software and simulate to verify the functionality.</li> <li>(2) To generate layout for NOR Gate using Tanner/Micro Wind Tool or Equivalent Industry Standard Software and simulate to verify the functionality.</li> </ul>	CO 2
Task10: Design and simulate CMOS Full Adder.	
<b>Objective:</b> To generate layout for FULL ADDER using Tanner/Micro wind tool or equivalent industry standard software and simulate to verify the functionality.	CO 2
Task-11: Design and simulate CMOS Full Subtractor.	
<b>Objective:</b> To generate layout for Full Subtractor using Tanner/Micro Wind Tool or equivalent Industry Standard Software and simulate to verify the functionality.	CO3
Task-12: Design and simulate D-Latch using CMOS.	
<b>Objective:</b> To generate layout for a D-Latch using Tanner/Micro wind tool or equivalent industry standard software and simulate to verify the functionality.	CO 3

Additional Experiments:	
-------------------------	--

# Task-13: Design and Implementation of 4-bit sequence detector through Mealy state machines.

**Objective:** Develop VHDL model for 4-bit sequence detector using Mealy state machines to simulate to verify the functionality and synthesize to verify the RTL schematic.

### Task-14: Design and simulate 2 to 4 Decoder using CMOS.

**Objective:** Develop VHDL model for 2 to 4 decoder using Tanner/Micro wind tool or equivalent industry standard software and simulate to verify the functionality.

#### Self-Study:

Contents to promote self-Learning:

SN O	Торіс	Reference
1	MOSFETS	https://www.youtube.com/watch?v=H7Gdz4QTvUU
2	CMOS Inverter	https://www.youtube.com/watch?v=U3GfEHDrOaQ
4	Logic Gates	https://www.youtube.com/watch?v=cXeJGuAvh64 https://www.youtube.com/watch?v=EHUJda2ttU8
5	4X1 Multiplexer	https://www.youtube.com/watch?v=WmwtSMYSZfI
6	Latches	http://vlab.amrita.edu/?sub=3&brch=165∼=907&cnt=2643
7	Two Input NAND & NOR Gates	https://www.youtube.com/watch?v=KfFALBexgfY https://www.youtube.com/watch?v=h4P0rIzyTtY https://www.youtube.com/watch?v=W-kMzdOpf9M
8	CMOS Inverters	https://www.youtube.com/watch?v=5FF5uRpWbjo https://www.youtube.com/watch?v=YLh9BpFpvDU https://www.youtube.com/watch?v=FqzzpobtL8c

### Text Book(s):

- 1. KamranEshraghian, Eshraghian Douglas and A. Pucknell, "Essentials of VLSI circuits and systems", PHI, 2013 edition.
- 2. K.Lal Kishore and V.S.V. Prabhakar, "VLSI Design", IK Publishers
- 3. Razavi, Design of Analog CMOS Integrated Circuits, Tata McGraw Hill Publications, 2002.

#### **Reference Book(s):**

- 1. J.M. Rabaey, A. Chandrakasan and B. Nikolic, Digital Integrated Circuits- A Design Perspective, 2nd edition, PHI, 2003.
- Weste, CMOS VLSI Design: A Circuits And Systems Perspective ,3rd edition, Pearson Education India, 2007.

#### Web References:

1. https://nptel.ac.in/courses/117/101/117101058/ 2.http://www.powershow.com/view/3d1876-Y2ViN/Design_Rules_EE213_VLSI_Design_Stick_Diagrams_ VLSI_design_powerpoint_ppt presentation 3.http://www.faadooengineers.com/threads/2274-VLSI-Tutorial-Full-Detailed-EbookPresentation-amp-Lecture-Notes

	NARAYANA ENGINEERING COLLEGE: NELLORE								
20EC2511	MIC	MICROWAVE AND OPTICAL COMMUNICATION LAB R20							
Semester	Н	ours / We	ek	Total	Credit		Max Ma	rks	
	L	Т	Р	hrs	С	CIE	SEE	TOTAL	
VII	0	0	3	36	1.5	40	60	100	
Pre-requisit	Pre-requisite: A course on Microwave and optical communications.								
Course Ol	Course Objectives:								
1. To stud	y and analy	yze microv	wave comp	onents by	measuring	various pa	rameters.		
2. To verif	fy the char	acteristics	of optical s	sources.	-	-			
3. To mea	sure attenu	ation and	distortions	in optical	fiber link.				
4. To anal	yze radiati	on pattern	of horn an	tenna					
Course Outcomes: After successful completion of the course, the student will be able to:									
CO 1	Analyze the waveguides in different modes of operation. (BL-4)								
Interpret the limitations of conventional tubes at microwave			wave freq	uencies and					
CO 2	different microwave oscillators & amplifiers. (BL-3)								

**CO 3** Analyse the optical fibre communications link. (BL-4)

	CO-PO Mapping													
	РО									PS	<b>50</b>			
СО	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	2	3	2						2	3		2	2	2
CO2	2	2	2						2	3		2	2	2
CO3	2	3	2						2	3		2	2	2
	1: Low, 2-Medium, 3- High													

COURSE CONTENT	CO				
Task-1: Characteristics of a Reflex Klystron And Electronic Tuning					
Objective: Use microwave bench setup to Study the mode characteristics and electronic	CO 3				
tuning range of reflex klystron.					
Task-2: V-I Characteristics of Gunn Oscillator					
Objective:					
Use microwave bench setup to study the V-I characteristics of GUNN diode and find the threshold	CO 2				
voltage and current point.	001				
Task-3: To Determine the Attenuation of A Given Unknown Attenuator					
Objective:					
Use microwave bench setup to determine the attenuation of a given unknown attenuator.	CO 3				
Task-4: Multi-Hole Directional Coupler					
Objective:					
Use microwave bench setup to study the characteristics of directional coupler and determine the	CO 2				
different parameters.					
Task-5: VSWR Measurement					

<b>Objective:</b> Use microwave bench setup to find VSWR and impedance of an unknown load that is connected at the end of the bench set up. Make use of VSWR meter for the measurement of VSWR of a given load.	CO 3
Task 6: Frequency and Wavelength of Waveguide	
Objective:	CO 1
Use microwave bench setup to determine the frequency and wavelength of waveguide.	01
Task-7: Characteristics of Magic Tee	
<b>Objective:</b> Use microwave bench setup to study the characteristics of magic tee and find the scattering parameters.	CO 2
Task-8: Characteristics of Fiber Optic LED	
Objective:	CO 5
To study the characteristics of fiber optic LED and photo detector.	005
Task-9: VI Characteristics of Laser Diode	
Objective: To Measure the VI Characteristics of Laser Diode.	CO 5
Task-10: Optical Fiber Digital Link	
<b>Objective:</b> To set up an optical fiber digital link and to study the relationship between the transmitted and received signal.	CO 4
Task-11: Numerical Aperture of an Optical Fiber	
Objective:	
To study the numerical aperture of an optical fiber.	CO 4
Task-12: Optical Fiber Analog Link	
Objective:	
To set up an optical fiber analog link and to study the relationship between the transmitted and received signal.	CO 4

Additional Experiments:	
Task-13: Impedance Measurement	
<b>Objective:</b> Use microwave bench-setup to measure the unknown impedance by using smith chart.	CO 3
Task-14: Characteristics of E-Plane T, H-Plane T	
<b>Objective:</b> Use microwave bench setup to find the S - matrix Characterization of E-Plane T, H-Plane T	CO 2

#### Tools / Equipment Required:

- 1.Regulated Klystron Power Supply 6 nos.
- 2. VSWR Meter 6 nos.
- 3. Milli/Micro Ammeters 10 nos.
- 4. Multi meters 10 nos.
- 5. CROs 8 nos.
- 6. GUNN Power Supply, Pin Moderator4 nos.
- 7. Relevant Microwave components –
- 8. Fiber Optic Analog Trainer based LED3 nos.
- 9. Fiber Optic Analog Trainer based laser2nos.
- 10. Fiber Optic Digital Trainer 1 no.
- 11. Fiber cables (Plastic, Glass)

#### Virtual Labs:

https://www.iitk.ac.in/mimt_lab/vlab/index.php?pg=/theory&usr=&enc= http://vlab.amrita.edu/index.php?sub=59&brch=163 http://vlab.amrita.edu/index.php?sub=59&brch=163

#### Self-Study:

Contents to promote self-Learning:

S.NO	Торіс	CO	Reference
1	Presentation on microwave virtual lab	CO 1	https://youtu.be/SkhPWhmfZzA
2	Reflex Klystron Characteristics	CO2	https://youtu.be/3HczHYTiJ44
3	Characteristics of LED	CO 5	https://youtu.be/TUjrTqkjwBk
4	Characteristics of Laser diode	CO 5	https://youtu.be/Njbg3cDxnoA

#### Text Book(s):

- 1. Microwave devices and Circuits-Samuel Y. Liao, Pearson, 3rd Edition, 2003.
- 2. Microwave principles-Herbert J.Reich, J.G. Skalnik, P.F. Ordung and H.L. Krauss, CBS publishers and distributors, New Delhi,2004
- 3. GerdKeiser, "OpticalFiberCommunication" McGraw-HillInternational, Singapore, 3rded., 2000
- 4. J.Senior, "OpticalCommunication, Principles and Practice", Prentice HallofIndia, 1994

#### **Reference Book(s):**

- 1. Foundations for microwave engineering-R.E. Collin, IEEE press, John Wiley, 2ndedition, 2002
- 2. Microwave circuits and passive devices-M.L. Sisodia and G.S. Raghuvanshi, Wiley Eastern Ltd., New age International publishers Ltd., 1995.
- 3. Microwave engineering passive circuits-Peter A. Rizzi, PHI, 1999.
- 4. Electronic and Radio Engineering-F.E. Terman, McGraw-Hill, 4th Edition, 1995
- 5. M. Ming-Kang Liu, "Principles and Applications of Optical Communications", TMH, 2010.

### Web References:

- 1. https://www.tutorialspoint.com/microwave_engineering/index.htm
- 2. <u>https://www.tutorialspoint.com/principles_of_communication/principles_of_optical_fibe</u> <u>r_communications.htm</u>
- 3. <u>https://nptel.ac.in/courses/108103141</u>
- 4. https://youtu.be/SkhPWhmfZzA
- 5. <u>https://youtu.be/3HczHYTiJ44</u>
- 6. <u>https://youtu.be/TUjrTqkjwBk</u>
- 7. https://youtu.be/Njbg3cDxnoA